Skip to content

Concept Enumeration

Prompt

You are an expert at generating Concept Labels for learning dependency graphs for courses.

I am writing a book on how to create intelligent software agents that use both LLMs and knowledge graphs. There is a course-description.md file in the Project Knoweldge

I want you to generate a list of the 200 most important Concept Labels in this course.

Just return a simple ordered list of the in 200 most important concepts in markdown with no other content. Use title case for each Concept Label.

Use abbreviations when the labels get over 30 characters long.

Return the list in the order the concepts should be learned. A concept can only be added if the prerequisite concepts are already listed.

Use the course-description.md file to find the prerequsites and list them as the first concepts in the list.

Response

I'll create a list of the 200 most important concept labels for a course on intelligent software agents with LLMs and knowledge graphs, based on the documentation provided. The list will be in learning order, with prerequisites first.

Intelligent Software Agents Concept Labels

  1. Python Programming
  2. Data Types
  3. Data Structures
  4. Version Control
  5. GitHub
  6. Integrated Development Environment
  7. Visual Studio Code
  8. Command Line Interface
  9. Software Agents
  10. Agency Levels
  11. Knowledge Representation
  12. Tools
  13. Tool Calling
  14. Tool Catalogs
  15. Local Development Environment
  16. Ollama
  17. Large Language Models
  18. DeepSeek R1
  19. Prompt Engineering
  20. Basic Tool-Calling Agents
  21. Graphics Processing Unit
  22. GPU Optimization
  23. SmolAgents Library
  24. Agent Frameworks
  25. LangChain
  26. PydanticAI
  27. ReAct Framework
  28. Custom Tools
  29. Tool Documentation
  30. Code Agents
  31. Direct Code Generation
  32. Code Execution
  33. Public Knowledge
  34. Private Knowledge
  35. Knowledge Sources Integration
  36. Multi-Agent Systems
  37. Error Handling
  38. Safety Considerations
  39. Intelligent Textbook
  40. Lightweight LLMs
  41. GPU Memory Requirements
  42. Token Generation Rate
  43. Python Docstrings
  44. Decorators
  45. Tool Decorator
  46. Function Parameters
  47. Parameter Types
  48. Return Types
  49. ISO 11179 Definitions
  50. Controlled Imports
  51. Sandboxed Environment
  52. Code Security
  53. LLM Integration
  54. Agent Architecture
  55. Decision-Making Agents
  56. Function-Calling Agents
  57. Iterative Agents
  58. Workflow Agents
  59. Code-Generating Agents
  60. Agentic Execution
  61. LLM Agent Control
  62. Agency Spectrum
  63. Knowledge Graphs
  64. Ontologies
  65. Semantic Networks
  66. Frames
  67. Rules-Based Systems
  68. Logic-Based Systems
  69. Information Organization
  70. Reasoning Mechanisms
  71. Semantic Grounding
  72. Procedural Code
  73. Declarative Code
  74. Agentic Code
  75. JSON Formatting
  76. LLM Response Parsing
  77. Python Code Snippets
  78. Matrix Operations
  79. Parallel Processing
  80. Model Inference
  81. Local LLM Deployment
  82. FinalAnswerTool
  83. Reasoning Trace
  84. Interleaved Reasoning and Action
  85. Retrieval Augmented Generation
  86. Knowledge Representation Trade-offs
  87. Tool API Design
  88. Action Definition
  89. Agntcy Standards
  90. Model Context Protocol
  91. Tool Name Conventions
  92. Business Process Modeling Notation
  93. Goal-Driven Process
  94. Software Development Life Cycle
  95. Computational Entities
  96. Autonomous Systems
  97. User Goal Representation
  98. Domain Knowledge
  99. Rule-Based Systems
  100. Code Agent Approach
  101. Efficiency in Execution
  102. Expressiveness in Programming
  103. Security Risks
  104. Module Access Control
  105. Isolation Contexts
  106. Agent Collaboration
  107. Agent Communication
  108. Agent Coordination
  109. Specialized Agent Roles
  110. Transparent Decision-Making
  111. Explainable AI
  112. Response Time Optimization
  113. Fluid Interactions
  114. External Knowledge Integration
  115. Context Management
  116. Task Decomposition
  117. Orchestration of Planning
  118. Dynamic Adjustments
  119. Python Exception Handling
  120. Symbolic Structures
  121. Entity Relationships
  122. Constraint Modeling
  123. Knowledge Access Efficiency
  124. Inference Mechanisms
  125. Truth Value Evaluation
  126. Incomplete Information Handling
  127. Abstract Symbol Mapping
  128. Real-World Referents
  129. Expressiveness vs Efficiency
  130. Computational Resource Constraints
  131. Local vs Cloud Execution
  132. Latency Reduction
  133. Cost Optimization
  134. Parameter Documentation
  135. Enumerated Values
  136. Error Return Formats
  137. Python Function Definition
  138. Automated Documentation
  139. DeepSeek Architecture
  140. Mixture of Experts
  141. Reinforcement Learning
  142. Parameter Efficiency
  143. Knowledge Base Integration
  144. Token Prediction
  145. Next-Token Prediction
  146. Deep Learning Models
  147. Transformer Architecture
  148. Attention Mechanisms
  149. Context Windows
  150. Prompt Templates
  151. Few-Shot Learning
  152. Zero-Shot Capabilities
  153. Agent Memory Systems
  154. Conversation State Management
  155. External Tool Connection
  156. API Integration
  157. Database Connectivity
  158. System Autonomy Degree
  159. Code Generation Quality
  160. Code Testing
  161. Code Debugging
  162. Agent Performance Metrics
  163. Peer Review Process
  164. Project Planning
  165. Milestone Reviews
  166. Feedback Integration
  167. Interactive Agent Design
  168. User Experience Considerations
  169. Agent Interface Design
  170. Command Parsing
  171. Intent Recognition
  172. Natural Language Understanding
  173. Tool Selection Logic
  174. Parameter Extraction
  175. Content Generation
  176. Content Refinement
  177. Multimodal Agents
  178. Education Applications
  179. Code Assistant Applications
  180. Knowledge Graph Traversal
  181. Graph Database Integration
  182. Relationship Types
  183. Entity Properties
  184. Knowledge Graph Construction
  185. Knowledge Graph Maintenance
  186. Knowledge Inference
  187. Reasoning Chain Documentation
  188. Decision Transparency
  189. Interpretable Agent Behavior
  190. Domain-Specific Knowledge
  191. Tool Interoperability
  192. Result Validation
  193. Output Formatting
  194. Code Documentation Generation
  195. Error Messages Interpretation
  196. LLM Limitations
  197. Context Window Management
  198. Tool Selection Strategies
  199. System Architecture Design
  200. Agent Deployment Strategies