Text Processing Pipeline Workflow

Typical stages in preprocessing text for NLP applications

Before applying sophisticated machine learning models, NLP systems typically perform basic text processing to standardize and clean input data. This flowchart illustrates the typical preprocessing pipeline that ensures consistency and reduces noise in text data.

flowchart TD Start([Raw Text Input]):::startNode Step1[Lowercase Conversion]:::processNode Step2[Special Character Removal]:::processNode Step3[Whitespace Normalization]:::processNode Decision1{Keep Punctuation?}:::decisionNode Step4a[Remove Punctuation]:::processNode Step4b[Preserve Punctuation]:::processNode Step5[Tokenization]:::processNode Decision2{Apply Stemming/Lemmatization?}:::decisionNode Step6a[Apply Morphological Processing]:::processNode Step6b[Keep Original Tokens]:::processNode End([Processed Tokens Ready]):::endNode Start --> Step1 Step1 --> Step2 Step2 --> Step3 Step3 --> Decision1 Decision1 -->|No| Step4a Decision1 -->|Yes| Step4b Step4a --> Step5 Step4b --> Step5 Step5 --> Decision2 Decision2 -->|Yes| Step6a Decision2 -->|No| Step6b Step6a --> End Step6b --> End classDef startNode fill:#667eea,stroke:#333,stroke-width:2px,color:#fff,font-size:16px classDef endNode fill:#4facfe,stroke:#333,stroke-width:2px,color:#fff,font-size:16px classDef processNode fill:#764ba2,stroke:#333,stroke-width:2px,color:#fff,font-size:16px classDef decisionNode fill:#f093fb,stroke:#333,stroke-width:2px,color:#333,font-size:16px,font-weight:bold linkStyle default stroke:#999,stroke-width:2px

Note: Each step in this pipeline serves a specific purpose:

The choice of which steps to apply depends on the downstream NLP task. For example, sentiment analysis might preserve punctuation (exclamation marks indicate emphasis), while keyword search might remove all punctuation for simpler matching.

Back to Documentation