Skip to content

Convolutional Neural Networks for Image Processing

Chapter Outline

1. Introduction to CNNs

  • Historical context and development
  • Comparison with traditional neural networks
  • Key advantages for image processing tasks
  • Overview of CNN applications in computer vision

2. Fundamental CNN Components

  • Convolutional layers
  • Filters and kernels
  • Feature maps
  • Stride and padding options
  • Pooling layers
  • Max pooling
  • Average pooling
  • Purpose in reducing spatial dimensions
  • Activation functions
  • ReLU and variants
  • Importance of non-linearity
  • Fully connected layers

3. CNN Architectures

  • LeNet
  • AlexNet
  • VGG
  • Inception/GoogLeNet
  • ResNet
  • DenseNet
  • Vision Transformers (ViT)

4. Training CNNs

  • Loss functions for image tasks
  • Backpropagation through convolutional layers
  • Regularization techniques
  • Dropout
  • Batch normalization
  • Data augmentation
  • Optimization strategies
  • Learning rate scheduling
  • Weight initialization methods

5. Transfer Learning with CNNs

  • Pre-trained models on ImageNet
  • Feature extraction approaches
  • Fine-tuning strategies
  • Domain adaptation challenges

6. Advanced CNN Applications

  • Object detection
  • R-CNN family
  • YOLO
  • SSD
  • Semantic segmentation
  • FCN
  • U-Net
  • Instance segmentation
  • Mask R-CNN
  • Image generation and style transfer

7. Explainable CNNs

  • Visualization techniques
  • Feature maps
  • Activation maximization
  • Grad-CAM
  • Interpretability approaches
  • Ethical considerations

8. Optimizing CNN Performance

  • Model compression techniques
  • Pruning
  • Quantization
  • Hardware considerations
  • GPU acceleration
  • Edge deployment
  • Model architecture search

9. Case Studies

  • Medical imaging analysis
  • Autonomous driving perception
  • Face recognition systems
  • Industrial quality control

10. Future Directions

  • Hybrid architectures (CNN + Transformer)
  • Self-supervised learning for CNNs
  • Multimodal learning
  • Neuromorphic approaches

11. Practical Implementations

  • CNN implementations in popular frameworks
  • Deployment considerations
  • Best practices for CNN development

12. Glossary and Resources

  • Key terminology
  • Recommended reading
  • Online courses and tutorials
  • Datasets for practice