Skip to content

Neural Network Parameter Count MicroSim

Run the Neural Network Parameter Count MicroSim

Edit this MicroSim

Prompt

Generate a p5.js file that draws a simple neural network. Use circles to draw the nodes and lines to draw the weights. Use the responsive design template in the project area. The input layer is on the left. The output layer is on the right. The layer on the left should be labeled "Input". The layer on the right should be labeled "Output" Add two slider controls in the controls region that change the number of layers and the number of neurons in a layer. Add two text items that show the number of bias weights and the total number of parameters in the model. Display the equation for calculating the total number of parameters.

Explanation

I'll help you calculate the correct formula and create a visualization. Let me analyze the current code and make necessary corrections.

Let's first calculate the correct formula:

Now I'll create a React component that visualizes this network:

Let me explain the formula for calculating the total parameters in a fully connected neural network:

  1. For weights:
  2. Each connection between two layers needs a weight parameter
  3. For each pair of adjacent layers: (nodes in previous layer × nodes in current layer)
  4. Since input layer doesn't have incoming connections, we multiply by (numLayers - 1)
  5. Total weight parameters = neuronsPerLayer × neuronsPerLayer × (numLayers - 1)

  6. For biases:

  7. Each neuron (except in input layer) has one bias parameter
  8. Total bias parameters = neuronsPerLayer × (numLayers - 1)

  9. Total parameters = Total weight parameters + Total bias parameters

For example, in a network with 3 layers (including input) and 4 neurons per layer: - Weight parameters: 4 × 4 × (3-1) = 32 - Bias parameters: 4 × (3-1) = 8 - Total parameters: 32 + 8 = 40

I've created an interactive visualization where you can: 1. Adjust the number of layers (2-7) 2. Adjust the neurons per layer (2-10) 3. See the network structure 4. Get a breakdown of weight parameters, bias parameters, and total parameters

Would you like me to add any additional features to the visualization?

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
// Demo of parameters in neural networks with a responsive design
let containerWidth;  // Will be set based on container size
let containerHeight = 450;  // Fixed height (400 for drawing + 50 for controls)
let drawHeight = 400;
let controlHeight = 50;
let sliderLeftMargin = 220;
let numLayersSlider;
let numNeuronsSlider;
let parameterCount = 0;
let labelValueWidth = 240;
let numLayers = 3;  // Default number of layers (including Input and Output)
let numNeurons = 4; // Default number of neurons in each layer

function setup() {
    updateCanvasSize();
    const canvas = createCanvas(containerWidth, containerHeight);
    var mainElement = document.querySelector('main');
    canvas.parent(mainElement);

    numLayersSlider = createSlider(2, 7, 3);
    numLayersSlider.position(sliderLeftMargin, drawHeight + 6);
    numLayersSlider.size(containerWidth - sliderLeftMargin - 25);
    numLayersSlider.input(updateNetwork);

    numNeuronsSlider = createSlider(2, 10, 4);
    numNeuronsSlider.position(sliderLeftMargin, drawHeight + 26);
    numNeuronsSlider.size(containerWidth - sliderLeftMargin - 25);
    numNeuronsSlider.input(updateNetwork);

    updateNetwork();
}

function updateCanvasSize() {
    const container = document.querySelector('main').getBoundingClientRect();
    containerWidth = Math.floor(container.width);
}

function windowResized() {
    updateCanvasSize();
    resizeCanvas(containerWidth, containerHeight);

    // Update slider positions and sizes
    numLayersSlider.size(containerWidth - sliderLeftMargin - 25);
    numNeuronsSlider.size(containerWidth - sliderLeftMargin - 25);

    updateNetwork();
}

function updateNetwork() {
    // make the background of the drawing region a very light blue
    fill('aliceblue');
    stroke('silver');
    rect(0, 0, containerWidth, drawHeight);

    fill('white');
    rect(0, drawHeight, containerWidth, controlHeight);
    stroke('blue');

    numLayers = numLayersSlider.value();
    numNeurons = numNeuronsSlider.value();

    let layerPositions = Array.from(
        {length: numLayers}, 
        (_, i) => map(i, 0, numLayers - 1, 0.2, 0.8) * containerWidth
    );

    parameterCount = 0;

    for (let i = 0; i < layerPositions.length; i++) {
        let label = "Hidden";
        if (i === 0) label = "Input";
        else if (i === layerPositions.length - 1) label = "Output";

        drawNodes(layerPositions[i], drawHeight / 2, numNeurons, label);
    }

    for (let i = 0; i < layerPositions.length - 1; i++) {
        connectLayers(
            layerPositions[i], drawHeight / 2, numNeurons,
            layerPositions[i + 1], drawHeight / 2, numNeurons
        );
        parameterCount += numNeurons * numNeurons; // Adding weights
    }

    parameterCount += (numLayers - 1) * numNeurons; // Adding biases

    // Show labels and parameter count
    noStroke();
    fill('black');
    textSize(16);
    textAlign(LEFT);
    text('Number of Layers: ' + numLayers, 5, numLayersSlider.y + 5);
    text('Number of Neurons/Layer: ' + numNeurons, 5, numNeuronsSlider.y + 5);

    textAlign(LEFT);
    text('Bias Weights: ' + numNeurons, 10, drawHeight - 20);
    textAlign(CENTER, CENTER);
    text('Total Parameter Count: ' + parameterCount, containerWidth / 2, drawHeight - 20);
}

function drawNodes(x, y, numNodes, label) {
    stroke('blue');
    strokeWeight(2);
    let gap = 40;
    let startY = y - ((numNodes - 1) * gap) / 2;
    for (let i = 0; i < numNodes; i++) {
        ellipse(x, startY + i * gap, 20, 20);
    }

    noStroke();
    fill('black');
    textSize(16);
    textAlign(CENTER, CENTER);
    text(label, x, y + ((numNodes + 1) * gap) / 2);
}

function connectLayers(x1, y1, numNodes1, x2, y2, numNodes2) {
    stroke('blue');
    strokeWeight(1);
    let gap1 = 40;
    let gap2 = 40;
    let startY1 = y1 - ((numNodes1 - 1) * gap1) / 2;
    let startY2 = y2 - ((numNodes2 - 1) * gap2) / 2;
    for (let i = 0; i < numNodes1; i++) {
        for (let j = 0; j < numNodes2; j++) {
            line(x1, startY1 + i * gap1, x2, startY2 + j * gap2);
        }
    }
}