Intelligent textbooks offer tremendous educational possibilities, but understanding
how users interact with these resources is essential for continuous improvement.
Let's explore comprehensive logging strategies that can help you measure engagement
and optimize your intelligent textbooks.
Using Web Analytics
Google Analytics provides a solid foundation for understanding basic usage patterns in your intelligent textbook sites. The mkdocs-material theme makes integration straightforward:
Setting Up Google Analytics
Create a Google Analytics 4 Property - Sign up for a Google Analytics account if you don't already have one, and create a new property for your intelligent textbook site.
Get Your Measurement ID - After setting up your property, you'll receive a measurement ID (format: G-XXXXXXXXXX).
Configure mkdocs.yml - Add the following to your mkdocs.yml file:
1234
extra:
analytics:
provider: google
property: G-XXXXXXXXXX # Replace with your actual measurement ID
As seen in your configuration file, you're already using the property ID G-D7X1XT7Z19.
Key Metrics to Track
With Google Analytics successfully implemented, you can track:
Page Views - Which pages are most frequently visited
Session Duration - How long users spend on each page
User Flow - How users navigate through your content
Bounce Rate - The percentage of visitors who leave after viewing only one page
Geographic Data - Where your users are located
Device Information - What devices and browsers are being used
Creating Custom Events
Beyond the default tracking, you can implement custom events to track specific interactions:
1 2 3 4 5 6 7 8 910111213
// In your js/extra.js filedocument.addEventListener('DOMContentLoaded',function(){// Track clicks on MicroSim launch buttonsconstsimButtons=document.querySelectorAll('.microsim-launch');simButtons.forEach(button=>{button.addEventListener('click',function(){constsimName=this.getAttribute('data-sim-name');gtag('event','launch_microsim',{'sim_name':simName});});});});
Detailed Logging
While Google Analytics provides excellent high-level insights, intelligent textbooks benefit from more detailed logging capabilities, especially for tracking interactive elements like MicroSims and quiz interactions.
Setting Up a Logging Backend
API Endpoint Creation - Establish a simple API that can receive and store interaction events:
1 2 3 4 5 6 7 8 910111213141516171819202122
# Example Flask backend for loggingfromflaskimportFlask,request,jsonifyfromflask_corsimportCORSimportjsonimportdatetimeapp=Flask(__name__)CORS(app)@app.route('/log',methods=['POST'])deflog_event():data=request.jsondata['timestamp']=datetime.datetime.now().isoformat()# Add to log filewithopen('interaction_logs.jsonl','a')asf:f.write(json.dumps(data)+'\n')returnjsonify({"success":True})if__name__=='__main__':app.run(debug=True)
Client-Side Implementation - Create JavaScript functions for event logging:
1 2 3 4 5 6 7 8 91011121314151617
// In js/extra.jsfunctionlogInteraction(eventType,eventData){constpayload={eventType:eventType,eventData:eventData,page:window.location.pathname,timestamp:newDate().toISOString()};fetch('https://your-logging-endpoint.com/log',{method:'POST',headers:{'Content-Type':'application/json',},body:JSON.stringify(payload)}).catch(err=>console.error('Logging error:',err));}
// For p5.js based MicroSimsfunctionsetupMicroSimLogging(simId){// Log start timeconststartTime=newDate();logInteraction('microsim_start',{simId:simId,startTime:startTime.toISOString()});// Setup interval monitoring for active usageletlastInteractionTime=startTime;constinteractionInterval=setInterval(()=>{// If user hasn't interacted in 2 minutes, consider session endedconstcurrentTime=newDate();if(currentTime-lastInteractionTime>120000){clearInterval(interactionInterval);logInteraction('microsim_end',{simId:simId,startTime:startTime.toISOString(),endTime:lastInteractionTime.toISOString(),duration:(lastInteractionTime-startTime)/1000});}},10000);// Update last interaction time on user inputdocument.getElementById(simId).addEventListener('mousemove',()=>{lastInteractionTime=newDate();});}
Logging Search Terms and Questions
For built-in search functionality or AI chatbots integrated with your intelligent textbook:
1 2 3 4 5 6 7 8 9101112131415161718192021222324
// Log search queriesdocument.addEventListener('DOMContentLoaded',function(){constsearchInput=document.querySelector('.md-search__input');if(searchInput){searchInput.addEventListener('keyup',function(e){if(e.key==='Enter'){logInteraction('search_query',{query:this.value});}});}// For AI chatbot loggingconstchatForm=document.querySelector('.chatbot-form');if(chatForm){chatForm.addEventListener('submit',function(e){constuserQuestion=document.querySelector('.chatbot-input').value;logInteraction('chatbot_question',{question:userQuestion});});}});
Logging User-Specific Activities
For personalized learning experiences, implementing user-specific logging provides
valuable insights into individual learning patterns.
Anonymous vs. Authenticated Logging
You can implement both options:
Anonymous Session Tracking - Use browser storage to maintain
consistency across a single user session:
1 2 3 4 5 6 7 8 910111213141516171819
// Generate anonymous user ID if not presentletuserId=localStorage.getItem('anonymous_user_id');if(!userId){userId='anon_'+Math.random().toString(36).substring(2,15);localStorage.setItem('anonymous_user_id',userId);}// Include in all logging eventsfunctionenhancedLogInteraction(eventType,eventData){constpayload={userId:userId,eventType:eventType,eventData:eventData,page:window.location.pathname,timestamp:newDate().toISOString()};// Logging code...}
Authenticated User Tracking - For classroom or institutional settings where users log in:
1 2 3 4 5 6 7 8 9101112131415
// Assuming currentUser is set on loginfunctionuserLogInteraction(eventType,eventData){if(!window.currentUser)return;// Don't log if not logged inconstpayload={userId:window.currentUser.id,username:window.currentUser.username,eventType:eventType,eventData:eventData,page:window.location.pathname,timestamp:newDate().toISOString()};// Logging code...}
Progress Tracking
For comprehensive learning progress analysis:
1 2 3 4 5 6 7 8 9101112131415161718192021
// Track completion of chapters/sectionsfunctionmarkAsCompleted(sectionId){logInteraction('section_completed',{sectionId:sectionId,completionTime:newDate().toISOString()});// Update UI to show completion statusdocument.querySelector(`#${sectionId} .completion-indicator`).classList.add('completed');}// Track quiz performancefunctionlogQuizResult(quizId,score,maxPossible){logInteraction('quiz_completed',{quizId:quizId,score:score,maxPossible:maxPossible,percentage:(score/maxPossible)*100});}
Regulatory Compliance
When implementing logging systems, especially for educational purposes,
adherence to privacy regulations is critical.
GDPR Compliance
For users in the European Union, the General Data Protection Regulation (GDPR) applies:
// Cookie consent implementationfunctionshowConsentBanner(){constbanner=document.createElement('div');banner.className='consent-banner';banner.innerHTML=` <p>This site uses cookies and logging to improve your learning experience. We track how you use our educational materials to make them better.</p> <button id="accept-consent">Accept</button> <button id="reject-consent">Reject</button> `;document.body.appendChild(banner);document.getElementById('accept-consent').addEventListener('click',()=>{localStorage.setItem('consent_given','true');banner.remove();initializeLogging();});document.getElementById('reject-consent').addEventListener('click',()=>{localStorage.setItem('consent_given','false');banner.remove();});}// Check if consent already givenif(localStorage.getItem('consent_given')==='true'){initializeLogging();}elseif(localStorage.getItem('consent_given')===null){showConsentBanner();}
Data Minimization** - Only collect what's necessary:
1 2 3 4 5 6 7 8 910
// Example of data minimization in loggingfunctionlogMinimalData(eventType,eventData){// Remove any personally identifiable informationconstsanitizedData={...eventData};deletesanitizedData.email;deletesanitizedData.fullName;// Log only essential datalogInteraction(eventType,sanitizedData);}
COPPA and FERPA Compliance
For educational materials that might be used by children or in educational institutions in the US:
Children's Online Privacy Protection Act (COPPA) - For users under 13:
1 2 3 4 5 6 7 8 910111213141516
// Age verification for COPPA compliancefunctioncheckAgeCompliance(){constuserAge=localStorage.getItem('user_age');if(!userAge){constage=prompt("Please enter your age for compliance purposes:");localStorage.setItem('user_age',age);if(parseInt(age)<13){// Disable personal data collection for under 13window.loggingLevel='minimal';}else{window.loggingLevel='standard';}}}
Family Educational Rights and Privacy Act (FERPA) - For educational institutions:
1 2 3 4 5 6 7 8 910111213
// Example of FERPA compliant loggingfunctioneducationalLogging(eventType,eventData){// Use institution-assigned ID instead of personal identifiersconstpayload={institutionId:window.institutionId,courseId:window.courseId,studentId:window.studentId,// Institution-assigned, not PIIeventType:eventType,eventData:eventData};// Logging code...}
Building an Analytics Dashboard
Once you've collected detailed usage data, a dashboard helps visualize patterns and gain actionable insights.
# Example data processing script for dashboardimportpandasaspdimportjson# Load the log datalogs=[]withopen('interaction_logs.jsonl','r')asf:forlineinf:logs.append(json.loads(line))# Convert to pandas DataFramedf=pd.DataFrame(logs)# Process by event typemicrosim_usage=df[df['eventType']=='microsim_end'].groupby('eventData.simId').agg({'eventData.duration':['count','mean','median','min','max']})# Generate insightsunderutilized_pages=df.groupby('page').size().sort_values().head(10)popular_pages=df.groupby('page').size().sort_values(ascending=False).head(10)popular_search_terms=df[df['eventType']=='search_query']['eventData.query'].value_counts().head(20)# Export for dashboardmicrosim_usage.to_csv('dashboard_data/microsim_usage.csv')underutilized_pages.to_csv('dashboard_data/underutilized_pages.csv')popular_pages.to_csv('dashboard_data/popular_pages.csv')popular_search_terms.to_csv('dashboard_data/popular_search_terms.csv')
Dashboard Visualization
1 2 3 4 5 6 7 8 910111213141516171819202122
// Using a library like Chart.js for the dashboardfunctionloadDashboard(){// MicroSim usage chartfetch('dashboard_data/microsim_usage.json').then(response=>response.json()).then(data=>{constctx=document.getElementById('microsim-usage-chart').getContext('2d');newChart(ctx,{type:'bar',data:{labels:Object.keys(data),datasets:[{label:'Average Usage Time (seconds)',data:Object.values(data).map(item=>item.mean),backgroundColor:'rgba(54, 162, 235, 0.5)'}]}});});// Other dashboard charts...}
Real-time Monitoring
For real-time insights into active usage:
1 2 3 4 5 6 7 8 9101112131415161718192021
// Server-side with Socket.io for real-time dashboardconstio=require('socket.io')(server);// When logging an eventapp.post('/log',(req,res)=>{constdata=req.body;// Save to database...// Emit for real-time dashboardio.emit('new_event',data);res.json({success:true});});// Client-side dashboard updatesconstsocket=io.connect('https://your-logging-server.com');socket.on('new_event',(data)=>{// Update dashboard in real-timeupdateDashboardMetrics(data);});
Intelligent Content Recommendations
Use your logging data to power a recommendation engine:
1 2 3 4 5 6 7 8 910111213141516171819
#Simplifiedrecommendationenginedefgenerate_recommendations(user_id):#Getuser's recent activity user_logs = db.query(f"SELECT * FROM logs WHERE user_id = '{user_id}' ORDER BY timestamp DESC LIMIT 100") # Extract concepts and topics the user has engaged with user_concepts = extract_concepts_from_logs(user_logs) # Find related content that hasn'tbeenviewedrecommendations=db.query(f""" SELECT page_id, title FROM content WHERE primary_concept IN ({','.join(user_concepts)}) AND page_id NOT IN ( SELECT page FROM logs WHERE user_id = '{user_id}' AND eventType = 'page_view' ) LIMIT 5 """)returnrecommendations
Identifying Underutilized Content
One key advantage of comprehensive logging is identifying which sections of your intelligent textbook aren't receiving adequate attention.
Content Engagement Analysis
1 2 3 4 5 6 7 8 910111213141516171819202122
# Analyze content engagement
def analyze_content_engagement(logs_df, threshold=0.1):
# Get all pages
all_pages = get_all_pages_from_site_map()
# Count views per page
page_views = logs_df[logs_df['eventType'] == 'page_view'].groupby('page').size()
# Calculate total views
total_views = page_views.sum()
# Find pages with less than threshold% of total views
underutilized = []
for page in all_pages:
if page not in page_views or page_views[page] / total_views < threshold:
underutilized.append({
'page': page,
'views': page_views.get(page, 0),
'percentage': (page_views.get(page, 0) / total_views) * 100 if total_views > 0 else 0
})
return sorted(underutilized, key=lambda x: x['views'])
By implementing these detailed logging strategies, you'll gain valuable insights
into how users interact with your intelligent textbooks.
This data will guide your content development efforts, helping you create
more engaging and effective educational resources that truly meet your learners' needs.