Skip to content

Equation List

Generated by: Equation List Generator v1.0.0
Generated on: December 28, 2025 at 09:16 PM

This file lists all LaTeX equations in the textbook for verification that they render correctly.

Summary

Metric Count
Total Equations 535
Display Equations ($$...$$) 287
Inline Equations ($...$) 248

Equations by Chapter

Other Content

96 equations (47 display, 49 inline)

# Type Equation Source
1 Display \(\(m_1v_{1x,i} + m_2v_{2x,i} = m_1v_{1x,f} + m_2v_{2x,f}\)\) Line 21
2 Display \(\(m_1v_{1y,i} + m_2v_{2y,i} = m_1v_{1y,f} + m_2v_{2y,f}\)\) Line 24
3 Inline \(v_{0x} = v_0 \cos\theta\) Line 19
4 Inline \(v_{0y} = v_0 \sin\theta\) Line 20
5 Inline \(y_{max} = y_0 + \frac{v_{0y}^2}{2g}\) Line 21
6 Inline \(R = \frac{v_0^2 \sin(2\theta)}{g}\) Line 22
7 Inline \(F_x = F \cos\theta\) Line 18
8 Inline \(F_y = F \sin\theta\) Line 19
9 Inline \(N = mg - F_y\) Line 20
10 Inline \(f_k = \mu_k N\) Line 21
11 Inline \(a = (F_x - f_k) / m\) Line 22
12 Inline \(T - m_1g = m_1a\) Line 34
13 Inline \(m_2g - T = m_2a\) Line 35
14 Inline \(a = \frac{(m_2 - m_1)g}{m_1 + m_2}\) Line 36
15 Inline \(T = \frac{2m_1m_2g}{m_1 + m_2}\) Line 37
16 Inline \(N \cos\theta = mg\) Line 18
17 Inline \(N \sin\theta + f = \frac{mv^2}{r}\) Line 19
18 Inline \(v_{ideal} = \sqrt{rg \tan\theta}\) Line 20
19 Inline \(v_{ideal} = \sqrt{rg \tan\theta}\) Line 18
20 Inline \(v_{max} = \sqrt{\frac{rg(\sin\theta + \mu\cos\theta)}{\cos\theta - \mu\sin\theta}}\) Line 19
21 Inline \(\mu_{required} = \frac{\|f\|}{N}\) Line 20
22 Inline \(a_c = \frac{v^2}{r} = \omega^2 r\) Line 18
23 Inline \(F_c = ma_c = \frac{mv^2}{r}\) Line 19
24 Inline \(\omega = \frac{v}{r}\) Line 20
25 Display \(\(m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2'\)\) Line 54
26 Display \(\(\frac{1}{2}m_1 v_1^2 + \frac{1}{2}m_2 v_2^2 = \frac{1}{2}m_1 v_1'^2 + \frac{1}{2}m_2 v_2'^2\)\) Line 58
27 Display \(\(F = k \frac{\|q_1 q_2\|}{r^2}\)\) Line 13
28 Inline \((Coulomb's constant) -\) Line 18
29 Inline \(are the charges (Coulombs) -\) Line 19
30 Display \(\(\epsilon_{back} = k \cdot \omega\)\) Line 114
31 Display \(\(\eta = \frac{P_{mechanical}}{P_{electrical}} = \frac{\tau \cdot \omega}{V \cdot I}\)\) Line 140
32 Display \(\(F = BIL\)\) Line 276
33 Display \(\(\tau = r \times F = r \cdot BIL\)\) Line 279
34 Display \(\(\epsilon_{back} = k \cdot \omega\)\) Line 282
35 Display \(\(I = \frac{V - \epsilon_{back}}{R}\)\) Line 285
36 Display \(\(P_{in} = V \cdot I\)\) Line 288
37 Display \(\(P_{out} = \tau \cdot \omega\)\) Line 291
38 Display \(\(\eta = \frac{P_{out}}{P_{in}} \times 100\%\)\) Line 294
39 Display \(\(\omega = \frac{V}{k} - \frac{R}{k^2} \cdot \tau\)\) Line 300
40 Display \(\(\text{Efficiency} = \frac{E_{output}}{E_{input}} \times 100\%\)\) Line 18
41 Display \(\(\text{Transit Depth} = \left(\frac{R_{\text{planet}}}{R_{\text{star}}}\right)^2\)\) Line 63
42 Display \(\(J = F \cdot \Delta t = \Delta p\)\) Line 19
43 Display \(\(F_1 \cdot \Delta t_1 = F_2 \cdot \Delta t_2\)\) Line 22
44 Inline \(f_s^{max} = \mu_s N\) Line 25
45 Inline \(f_k = \mu_k N\) Line 26
46 Display \(\(\text{slope} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}\)\) Line 65
47 Inline \(t = \sqrt{\frac{2h}{g}}\) Line 19
48 Inline \(R = v_x \cdot t\) Line 20
49 Inline \(v_y = gt\) Line 21
50 Inline \(t = \sqrt{2h/g}\) Line 36
51 Inline \(R = v_x \cdot t\) Line 37
52 Inline \(mg \sin\theta\) Line 18
53 Inline \(mg \cos\theta\) Line 19
54 Inline \(N = mg \cos\theta\) Line 20
55 Inline \(f_s^{max} = \mu_s N\) Line 21
56 Inline \(\theta_c = \arctan(\mu_s)\) Line 22
57 Display \(\(\vec{p} = m\vec{v}\)\) Line 18
58 Display \(\(\Delta v = v_e \times \ln\left(\frac{m_{initial}}{m_{final}}\right)\)\) Line 18
59 Inline \(= change in velocity (m/s) -\) Line 21
60 Inline \(= exhaust velocity (m/s) -\) Line 22
61 Inline \(= initial mass (with fuel) -\) Line 23
62 Display \(\(V = IR\)\) Line 26
63 Display \(\(V = IR \quad \Rightarrow \quad I = \frac{V}{R} \quad \Rightarrow \quad R = \frac{V}{I}\)\) Line 61
64 Display \(\(P = IV = I^2R = \frac{V^2}{R}\)\) Line 88
65 Display \(\(PE_g = mgh\)\) Line 19
66 Display \(\(PE_s = \frac{1}{2}kx^2\)\) Line 22
67 Inline \(\vec{v}_{AB} = \vec{v}_A - \vec{v}_B\) Line 18
68 Inline \(v_{ABx} = v_{Ax} - v_{Bx}\) Line 20
69 Inline \(v_{ABy} = v_{Ay} - v_{By}\) Line 21
70 Inline \(\|\vec{v}_{AB}\| = \sqrt{v_{ABx}^2 + v_{ABy}^2}\) Line 22
71 Inline \(\theta = \tan^{-1}(v_{ABy}/v_{ABx})\) Line 23
72 Inline \(\vec{v}_{result} = \vec{v}_{swimmer} + \vec{v}_{current}\) Line 19
73 Inline \(t = \frac{d}{v_{swim}}\) Line 20
74 Inline \(x_{drift} = v_{current} \times t\) Line 21
75 Inline \(\theta = \arcsin(v_{current}/v_{swim})\) Line 22
76 Display \(\(\vec{p}_{initial} = \vec{p}_{final}\)\) Line 19
77 Display \(\(0 = \vec{p}_{rocket} + \vec{p}_{exhaust}\)\) Line 20
78 Display \(\(\vec{p}_{rocket} = -\vec{p}_{exhaust}\)\) Line 21
79 Display \(\(F_{thrust} = \frac{dm}{dt} \times v_{exhaust}\)\) Line 24
80 Inline \(= mass flow rate of exhaust (kg/s) -\) Line 27
81 Display \(\(KE_i + PE_i = KE_f + PE_f\)\) Line 20
82 Display \(\(\frac{1}{2}mv_i^2 + mgh_i = \frac{1}{2}mv_f^2 + mgh_f\)\) Line 22
83 Display \(\(R_{total} = R_1 + R_2 + R_3\)\) Line 59
84 Display \(\(\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\)\) Line 71
85 Display \(\(R_{total} = R_1 + R_2 + R_3 + ...\)\) Line 206
86 Display \(\(I_{total} = I_1 = I_2 = I_3\)\) Line 207
87 Display \(\(V_{total} = V_1 + V_2 + V_3\)\) Line 208
88 Display \(\(\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + ...\)\) Line 211
89 Display \(\(I_{total} = I_1 + I_2 + I_3\)\) Line 212
90 Display \(\(V_{total} = V_1 = V_2 = V_3\)\) Line 213
91 Display \(\(R_{total} = \frac{R_1 \times R_2}{R_1 + R_2}\)\) Line 216
92 Display \(\(R_{total} = \frac{R}{n}\)\) Line 219
93 Display \(\(T = 2\pi\sqrt{\frac{L}{g}}\)\) Line 31
94 Display \(\(W = \int_{x_1}^{x_2} F(x) \, dx\)\) Line 31
95 Display \(\(W_{net} = \Delta KE = KE_f - KE_i = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2\)\) Line 20
96 Display \(\(W = F \cdot d \cdot \cos(\theta)\)\) Line 26

Chapter 1: Scientific Foundations and Mathematical Tools

76 equations (10 display, 66 inline)

# Type Equation Source
1 Inline \(\frac{100 \text{ cm}}{1 \text{ m}} = 1\) Line 203
2 Inline \(\frac{1 \text{ m}}{100 \text{ cm}} = 1\) Line 204
3 Display \(\(25 \text{ m} \times \frac{100 \text{ cm}}{1 \text{ m}} = 2{,}500 \text{ cm}\)\) Line 208
4 Display $$60 \frac{\text{mi}}{\text{hr}} \times \frac{1.609 \text{ km}}{1 \text{ mi}} \times \frac{1{,}00... Line 214
5 Inline \(is an integer **Examples:** -\) Line 224
6 Inline \((move decimal left 3 places, positive exponent) -\) Line 228
7 Inline \((move decimal right 4 places, negative exponent) -\) Line 229
8 Inline \((move decimal left 7 places) **Why use scientific notation?** 1. **Clarity:**\) Line 230
9 Inline $is much clearer than 602,000,000,000,000,000,000,000 2. Precision: Scientific notation makes... Line 234
10 Inline \(- **Division:** Divide coefficients, subtract exponents:\) Line 241
11 Display \(\(d = vt + \frac{1}{2}at^2\)\) Line 277
12 Inline \(= distance,\) Line 279
13 Inline \(= initial velocity,\) Line 279
14 Inline \(= acceleration,\) Line 279
15 Inline \(= time Let's check the dimensions (using brackets [ ] to denote "dimensions of"): -\) Line 279
16 Inline \(✓ -\) Line 284
17 Inline \(measured counterclockwise from the positive x-axis: - **x-component:**\) Line 518
18 Inline \(- **y-component:**\) Line 520
19 Inline \(**Example:** A velocity vector of 50 m/s at 30° above the horizontal has: -\) Line 521
20 Inline \(m/s (horizontal) -\) Line 525
21 Inline $m/s (vertical) Reverse process (finding magnitude and direction from components): If you k... Line 526
22 Inline \(, you can find: - **Magnitude:**\) Line 530
23 Inline \(- **Direction:**\) Line 532
24 Inline \(: -\) Line 539
25 Inline $Memory aid: SOH-CAH-TOA - Sine = Opposite/Hypotenuse - Cosine = Adjacen... Line 543
26 Display \(\(c^2 = a^2 + b^2\)\) Line 553
27 Inline $Important angles to memorize: | Angle | sin | cos | tan | |-------|-----|-----|---... Line 559
28 Inline \(3. Add all y-components together:\) Line 587
29 Inline \(4. Find magnitude:\) Line 588
30 Inline \(5. Find direction:\) Line 589
31 Inline \(**Example:** Add two vectors: -\) Line 590
32 Inline \(m/s east (0°) -\) Line 594
33 Inline \(m/s north (90°) Using components: -\) Line 595
34 Inline \(m/s,\) Line 599
35 Inline \(m/s -\) Line 599
36 Inline \(m/s,\) Line 600
37 Inline \(m/s -\) Line 600
38 Inline \(m/s -\) Line 601
39 Inline \(m/s -\) Line 602
40 Inline \(m/s -\) Line 603
41 Inline $north of east #### Diagram: Vector Addition Interactive MicroSim <iframe src="../../sims/vecto... Line 604
42 Inline \(m/s east: -\) Line 724
43 Inline \(m/s,\) Line 726
44 Inline \(m/s -\) Line 726
45 Inline \(m/s,\) Line 727
46 Inline \(m/s -\) Line 727
47 Inline \(m/s -\) Line 728
48 Inline \(m/s -\) Line 729
49 Inline \(m/s -\) Line 730
50 Display \(\(\vec{A} \cdot \vec{B} = AB\cos(\theta)\)\) Line 741
51 Display \(\(\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z\)\) Line 749
52 Inline \(), then\) Line 755
53 Inline \(), then\) Line 756
54 Inline \(**Physical applications:** 1. **Work** in physics is defined as\) Line 756
55 Inline \(**Example:** Find the dot product of\) Line 762
56 Display \(\(\vec{A} \cdot \vec{B} = (3)(1) + (4)(2) = 3 + 8 = 11\)\) Line 766
57 Display \(\(\vec{A} \times \vec{B} = (AB\sin\theta)\hat{n}\)\) Line 774
58 Inline \(is a unit vector perpendicular to both. **Magnitude:**\) Line 776
59 Inline $Direction: Determined by the right-hand rule: 1. Point fingers of your right hand along... Line 778
60 Inline \(**Component formula** (for 3D vectors): If\) Line 784
61 Display \(\(\vec{A} \times \vec{B} = (A_y B_z - A_z B_y, A_z B_x - A_x B_z, A_x B_y - A_y B_x)\)\) Line 790
62 Inline \((NOT commutative!) - If vectors are parallel (\) Line 795
63 Inline \(), then\) Line 796
64 Inline \(), then\) Line 797
65 Inline \(**Physical applications:** 1. **Torque** is defined as\) Line 797
66 Inline \((position vector cross force) 2. **Angular momentum** is\) Line 801
67 Inline \(, meaning: - When\) Line 812
68 Inline \((where\) Line 816
69 Inline $. If you travel 60 miles in 1 hour, you'll travel 120 miles in 2 hours. **Inverse proportionali... Line 818
70 Inline \(, meaning: - When\) Line 820
71 Inline $. If you double the distance, force becomes one-fourth as strong. More complex proportions:... Line 826
72 Inline \(- Slope\) Line 854
73 Inline \(tells you starting value 2. **Quadratic:** Parabola, equation\) Line 856
74 Inline \() / (change in\) Line 871
75 Inline \() =\) Line 871
76 Display \(\(m = \frac{y_2 - y_1}{x_2 - x_1}\)\) Line 875

Chapter 2: Motion in One Dimension

51 equations (28 display, 23 inline)

# Type Equation Source
1 Inline \(\Delta x\) Line 58
2 Display \(\(\Delta x = x_{\text{final}} - x_{\text{initial}}\)\) Line 60
3 Display \(\(\text{Average speed} = \frac{\text{Total distance}}{\text{Total time}}\)\) Line 127
4 Display \(\(\text{Average velocity} = \frac{\text{Displacement}}{\text{Time interval}}\)\) Line 133
5 Display $$a_{\text{avg}} = \frac{\Delta v}{\Delta t} = \frac{v_{\text{final}} - v_{\text{initial}}}{t_{\t... Line 242
6 Inline $. The SI unit for acceleration is meters per second squared (m/s²), which can be read as "meter... Line 244
7 Inline \(m/s -\) Line 269
8 Inline \(m/s -\) Line 270
9 Display \(\(x = x_0 + vt\)\) Line 301
10 Inline $- Relates: velocities, acceleration, displacement - Missing: time - Use when: Time is unkn... Line 842
11 Inline \(m/s,\) Line 877
12 Inline \(m/s²,\) Line 877
13 Inline \(For velocity, use equation 1:\) Line 879
14 Display \(\(v = v_0 + at = 0 + (3.0)(5.0) = 15 \text{ m/s}\)\) Line 883
15 Display $$x = x_0 + v_0 t + \frac{1}{2}at^2 = 0 + 0 + \frac{1}{2}(3.0)(5.0)^2 = \frac{1}{2}(3.0)(25) = 37... Line 887
16 Inline \(m/s,\) Line 893
17 Inline \(m/s,\) Line 893
18 Display \(\(v^2 = v_0^2 + 2a(x - x_0)\)\) Line 899
19 Display \(\((80)^2 = 0^2 + 2a(1200)\)\) Line 900
20 Display \(\(6400 = 2400a\)\) Line 901
21 Display \(\(a = \frac{6400}{2400} = 2.67 \text{ m/s}^2\)\) Line 902
22 Inline \(m/s,\) Line 908
23 Inline \(m/s (comes to rest),\) Line 908
24 Inline \(m/s² Find:\) Line 908
25 Inline \(For time, use equation 1:\) Line 910
26 Display \(\(v = v_0 + at\)\) Line 914
27 Display \(\(0 = 5.0 + (-0.50)t\)\) Line 915
28 Display \(\(0.50t = 5.0\)\) Line 916
29 Display \(\(t = 10 \text{ s}\)\) Line 917
30 Display \(\(v^2 = v_0^2 + 2a(x - x_0)\)\) Line 921
31 Display \(\(0^2 = (5.0)^2 + 2(-0.50)(x - x_0)\)\) Line 922
32 Display \(\(0 = 25 - 1.0(x - x_0)\)\) Line 923
33 Display \(\(x - x_0 = 25 \text{ m}\)\) Line 924
34 Display \(\(g = 9.8 \text{ m/s}^2\)\) Line 994
35 Inline \(m/s² (negative because it points down) - **Positive downward, negative upward:** With this choice,\) Line 1000
36 Inline \(m/s (upward),\) Line 1017
37 Inline \(m/s²,\) Line 1017
38 Display \(\(v^2 = v_0^2 + 2a(x - x_0)\)\) Line 1023
39 Display \(\(0^2 = (15)^2 + 2(-9.8)(x - 0)\)\) Line 1024
40 Display \(\(0 = 225 - 19.6x\)\) Line 1025
41 Display \(\(x = \frac{225}{19.6} \approx 11.5 \text{ m}\)\) Line 1026
42 Inline \((back to starting position):\) Line 1028
43 Display \(\(x = x_0 + v_0 t + \frac{1}{2}at^2\)\) Line 1030
44 Display \(\(0 = 0 + 15t + \frac{1}{2}(-9.8)t^2\)\) Line 1031
45 Display \(\(0 = 15t - 4.9t^2\)\) Line 1032
46 Display \(\(0 = t(15 - 4.9t)\)\) Line 1033
47 Inline \((initial throw) or\) Line 1035
48 Inline $s (return to hand) Free fall problems directly apply the kinematic equations with a = -9.8 m/s²... Line 1035
49 Inline \(2.\) Line 1146
50 Inline \(3.\) Line 1147
51 Inline \(4.\) Line 1148

Chapter 3: Motion in Two Dimensions

48 equations (11 display, 37 inline)

# Type Equation Source
1 Inline \(x = x_0 + v_0t + \frac{1}{2}at^2\) Line 37
2 Inline \(v = v_0 + at\) Line 38
3 Inline \(v^2 = v_0^2 + 2a(x - x_0)\) Line 39
4 Inline \(v_x\) Line 47
5 Inline \(a_x\) Line 47
6 Inline \(v_y\) Line 48
7 Inline \(a_y\) Line 48
8 Inline \(\vec{v}\) Line 67
9 Inline \(v_x\) Line 68
10 Inline \(v_y\) Line 69
11 Inline \(\vec{v}\) Line 71
12 Inline \(\vec{v}\) Line 75
13 Inline \(v_x = v\cos\theta\) Line 76
14 Inline \(v_y = v\sin\theta\) Line 77
15 Inline \(\theta\) Line 78
16 Inline \(v_{0x} = v_0\cos\theta\) Line 90
17 Inline \(v_{0y} = v_0\sin\theta\) Line 91
18 Inline \(v_0\) Line 93
19 Inline \(\theta\) Line 93
20 Inline \(g = 9.8 \text{ m/s}^2\) Line 97
21 Display \(\(a_y = -g = -9.8 \text{ m/s}^2\)\) Line 101
22 Inline \(, object starts from rest - **Thrown upward:**\) Line 115
23 Inline \(, object rises then falls - **Thrown downward:**\) Line 116
24 Inline \(, object speeds up throughout fall - **At maximum height:**\) Line 117
25 Inline $- Independence: Horizontal and vertical motions occur simultaneously but don't affect each o... Line 191
26 Inline \(\| \| Velocity \| Constant (\) Line 199
27 Inline \() \| Changes (\) Line 200
28 Inline \() \| \| Position equation \|\) Line 200
29 Display \(\(x = v_0 t\)\) Line 267
30 Display \(\(y = y_0 - \frac{1}{2}gt^2\)\) Line 270
31 Display \(\(v_y = -gt\)\) Line 271
32 Inline \(: **Initial velocity components:**\) Line 357
33 Display \(\(v_{0x} = v_0\cos\theta\)\) Line 360
34 Display \(\(v_{0y} = v_0\sin\theta\)\) Line 361
35 Display \(\(x = (v_0\cos\theta)t\)\) Line 364
36 Display \(\(y = y_0 + (v_0\sin\theta)t - \frac{1}{2}gt^2\)\) Line 365
37 Display \(\(v_x = v_0\cos\theta\)\) Line 368
38 Display \(\(v_y = v_0\sin\theta - gt\)\) Line 369
39 Inline \((when\) Line 375
40 Inline \() - **Maximum height:**\) Line 375
41 Inline \(- **Total flight time:**\) Line 376
42 Inline \((for level ground,\) Line 377
43 Inline \() - **Horizontal range:**\) Line 377
44 Inline $is maximum). However, complementary angles (like 30° and 60°) produce the same range—they just h... Line 380
45 Display \(\(\vec{v}_{AB} = \vec{v}_A - \vec{v}_B\)\) Line 498
46 Inline \(" for swimmer velocity (blue) - "\) Line 539
47 Inline \(" for current velocity (red) - "\) Line 540
48 Inline $" for resultant velocity (purple) - "Starting point (A)" at bottom - "Intended destinati... Line 541

Chapter 4: Forces and Newton's Laws

16 equations (5 display, 11 inline)

# Type Equation Source
1 Display \(\(\vec{F}_{\text{net}} = m\vec{a}\)\) Line 233
2 Inline \(: -\) Line 251
3 Display \(\(1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2\)\) Line 270
4 Inline \() pulls down - Normal force (\) Line 491
5 Inline \() pushes up -\) Line 492
6 Inline $- Velocity constant (no acceleration) ### Conditions for Equilibrium For an object to be in eq... Line 504
7 Display \(\(\sum F_x = 0\)\) Line 516
8 Display \(\(\sum F_y = 0\)\) Line 517
9 Display \(\(W = mg\)\) Line 600
10 Inline \(is weight (measured in newtons, N) -\) Line 604
11 Inline \(is mass (measured in kilograms, kg) -\) Line 605
12 Inline $is the acceleration due to gravity (9.8 m/s² on Earth's surface) ### Mass vs Weight: A Critical... Line 606
13 Inline \(N - On the Moon:\) Line 622
14 Inline \(N (Moon's gravity is weaker) - In deep space:\) Line 623
15 Inline $N (no nearby gravitational source) But the mass stays 70 kg in all three locations! Mass is an ... Line 624
16 Inline \((normal force decreases) **On an inclined plane:** - Normal force\) Line 746

Chapter 5: Applications of Newton's Laws

64 equations (58 display, 6 inline)

# Type Equation Source
1 Display \(\(f_s^{max} = \mu_s N\)\) Line 108
2 Inline $. #### Diagram: Interactive Static Friction MicroSim <iframe src="../../sims/static-friction/m... Line 110
3 Display \(\(f_k = \mu_k N\)\) Line 179
4 Inline $is the normal force. Notice that this equation doesn't depend on the object's velocity—an object... Line 181
5 Display \(\(N = mg = (25 \text{ kg})(9.8 \text{ m/s}^2) = 245 \text{ N}\)\) Line 273
6 Display \(\(f_s^{max} = \mu_s N = (0.5)(245 \text{ N}) = 122.5 \text{ N}\)\) Line 277
7 Display \(\(f_k = \mu_k N = (0.3)(245 \text{ N}) = 73.5 \text{ N}\)\) Line 288
8 Display \(\(\sum F_x = F_{applied} - f_k = ma\)\) Line 292
9 Display \(\(150 \text{ N} - 73.5 \text{ N} = (25 \text{ kg})a\)\) Line 294
10 Display \(\(a = \frac{76.5 \text{ N}}{25 \text{ kg}} = 3.06 \text{ m/s}^2\)\) Line 296
11 Display \(\(\sum F_y = T - mg = 0\)\) Line 371
12 Display \(\(T = mg = (15 \text{ kg})(9.8 \text{ m/s}^2) = 147 \text{ N}\)\) Line 373
13 Display \(\(\sum F_x = T - f_k = ma\)\) Line 392
14 Display \(\(T - 300 \text{ N} = (1500 \text{ kg})(1.2 \text{ m/s}^2)\)\) Line 394
15 Display \(\(T = 1800 \text{ N} + 300 \text{ N} = 2100 \text{ N}\)\) Line 396
16 Inline \(N - Vertical:\) Line 410
17 Display \(\(N + F_y = mg\)\) Line 415
18 Display \(\(N = mg - F_y = (20)(9.8) - 25 = 171 \text{ N}\)\) Line 417
19 Display \(\(f_k = \mu_k N = (0.25)(171) = 42.75 \text{ N}\)\) Line 421
20 Display \(\(\sum F_x = F_x - f_k = ma\)\) Line 425
21 Display \(\(43.3 - 42.75 = 20a\)\) Line 427
22 Display \(\(a = 0.028 \text{ m/s}^2\)\) Line 429
23 Inline \((parallel to incline),\) Line 512
24 Display \(\(\sum F_y = N - mg \cos \theta = 0\)\) Line 570
25 Display \(\(N = mg \cos \theta\)\) Line 572
26 Display \(\(\sum F_x = f_s - mg \sin \theta = 0\)\) Line 576
27 Display \(\(f_s = mg \sin \theta\)\) Line 578
28 Display \(\(mg \sin \theta_{critical} = \mu_s (mg \cos \theta_{critical})\)\) Line 586
29 Display \(\(\tan \theta_{critical} = \mu_s\)\) Line 588
30 Display \(\(\theta_{critical} = \arctan(\mu_s)\)\) Line 590
31 Display \(\(N = mg \cos \theta = (5)(9.8) \cos 35° = 40.1 \text{ N}\)\) Line 605
32 Display \(\(f_k = \mu_k N = (0.25)(40.1) = 10.0 \text{ N}\)\) Line 609
33 Display \(\(\sum F_x = mg \sin \theta - f_k = ma\)\) Line 613
34 Display \(\((5)(9.8) \sin 35° - 10.0 = 5a\)\) Line 615
35 Display \(\(28.1 - 10.0 = 5a\)\) Line 617
36 Display \(\(a = 3.62 \text{ m/s}^2\)\) Line 619
37 Display \(\(T - m_1 g = m_1 a\)\) Line 779
38 Display \(\(m_2 g - T = m_2 a\)\) Line 782
39 Display \(\(m_2 g - m_1 g = m_1 a + m_2 a\)\) Line 785
40 Display \(\((m_2 - m_1)g = (m_1 + m_2)a\)\) Line 787
41 Display $$a = \frac{(m_2 - m_1)g}{m_1 + m_2} = \frac{(7-5)(9.8)}{5+7} = \frac{19.6}{12} = 1.63 \text{ m/s... Line 789
42 Display \(\(T = m_1(g + a) = 5(9.8 + 1.63) = 57.2 \text{ N}\)\) Line 792
43 Display \(\(T = m_2(g - a) = 7(9.8 - 1.63) = 57.2 \text{ N}\)\) Line 795
44 Display \(\(F = \frac{mg}{2} = \frac{(120)(9.8)}{2} = 588 \text{ N}\)\) Line 894
45 Display \(\(d_{rope} = 2 \times d_{load} = 2 \times 3 = 6 \text{ m}\)\) Line 897
46 Inline \(J - Work output:\) Line 902
47 Display \(\(a_c = \frac{v^2}{r}\)\) Line 984
48 Display \(\(a_c = \omega^2 r\)\) Line 990
49 Display \(\(a_c = \frac{v^2}{r} = \frac{(20)^2}{50} = \frac{400}{50} = 8.0 \text{ m/s}^2\)\) Line 999
50 Display \(\(F_c = ma_c = m\frac{v^2}{r}\)\) Line 1007
51 Display \(\(F_c^{max} = f_s^{max} = \mu_s N = \mu_s mg\)\) Line 1089
52 Display \(\(\mu_s mg = m\frac{v^2}{r}\)\) Line 1093
53 Display \(\(\mu_s g = \frac{v^2}{r}\)\) Line 1097
54 Display \(\(v = \sqrt{\mu_s gr} = \sqrt{(0.85)(9.8)(80)} = \sqrt{666.4} = 25.8 \text{ m/s}\)\) Line 1101
55 Inline $km/h The maximum safe speed is about 93 km/h (58 mph). In wet conditions, with μs ≈ 0.5, this d... Line 1103
56 Display \(\(v_{ideal} = \sqrt{rg \tan \theta}\)\) Line 1190
57 Display \(\(v_{ideal} = \sqrt{rg \tan \theta} = \sqrt{(120)(9.8) \tan 15°}\)\) Line 1259
58 Display \(\(v_{ideal} = \sqrt{(1176)(0.268)} = \sqrt{315.2} = 17.8 \text{ m/s}\)\) Line 1261
59 Display \(\(N \cos 15° = mg\)\) Line 1274
60 Display \(\(N = \frac{mg}{\cos 15°} = \frac{(1200)(9.8)}{0.966} = 12,180 \text{ N}\)\) Line 1276
61 Display \(\(F_c = \frac{mv^2}{r} = \frac{(1200)(25)^2}{120} = 6250 \text{ N}\)\) Line 1280
62 Display \(\(N \sin 15° = (12,180)(0.259) = 3155 \text{ N}\)\) Line 1284
63 Display \(\(f = F_c - N \sin \theta = 6250 - 3155 = 3095 \text{ N}\)\) Line 1288
64 Display \(\(\mu = \frac{f}{N} = \frac{3095}{12,180} = 0.25\)\) Line 1292

Chapter 6: Work, Energy, and Power

71 equations (33 display, 38 inline)

# Type Equation Source
1 Display \(\(W = F \cdot d \cdot \cos(\theta)\)\) Line 61
2 Inline \(= work (measured in joules, J) -\) Line 65
3 Inline \(= magnitude of the applied force (newtons, N) -\) Line 66
4 Inline \(= displacement of the object (meters, m) -\) Line 67
5 Inline \(), work is maximum:\) Line 72
6 Inline \(), no work is done:\) Line 73
7 Inline \(), work is negative:\) Line 74
8 Display \(\(W = (50 \text{ N})(3 \text{ m})\cos(0°) = 150 \text{ J}\)\) Line 78
9 Display \(\(W = \int_{x_1}^{x_2} F(x) \, dx\)\) Line 166
10 Display \(\(W = \frac{1}{2}kx^2\)\) Line 172
11 Display \(\(KE = \frac{1}{2}mv^2\)\) Line 251
12 Inline \(= kinetic energy (joules, J) -\) Line 255
13 Inline \(= mass (kilograms, kg) -\) Line 256
14 Display \(\(KE = \frac{1}{2}(1200 \text{ kg})(25 \text{ m/s})^2 = 375,000 \text{ J}\)\) Line 269
15 Display \(\(W_{net} = \Delta KE = KE_f - KE_i\)\) Line 281
16 Display \(\(W_{net} = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2\)\) Line 285
17 Inline \(m/s² 2. Use kinematic equation:\) Line 301
18 Inline \(3. Solve for\) Line 302
19 Inline \(m Using work-energy theorem: 1. Initial KE:\) Line 303
20 Inline \(J 2. Final KE: 0 J (block stops) 3. Work by friction:\) Line 306
21 Inline \(4. Apply theorem:\) Line 308
22 Display \(\(PE_g = mgh\)\) Line 409
23 Inline \(= gravitational potential energy (joules, J) -\) Line 413
24 Inline \(= mass (kg) -\) Line 414
25 Inline \(= gravitational acceleration (9.8 m/s²) -\) Line 415
26 Display \(\(PE_g = (10 \text{ kg})(9.8 \text{ m/s}^2)(2 \text{ m}) = 196 \text{ J}\)\) Line 427
27 Display \(\(PE_s = \frac{1}{2}kx^2\)\) Line 435
28 Inline \(= elastic potential energy (J) -\) Line 439
29 Inline \(= spring constant (N/m), measuring the spring's stiffness -\) Line 440
30 Inline \(N/m by 0.3 meters stores:\) Line 452
31 Display \(\(PE_s = \frac{1}{2}(200 \text{ N/m})(0.3 \text{ m})^2 = 9 \text{ J}\)\) Line 454
32 Display \(\(E_{total} = E_{kinetic} + E_{potential} + E_{thermal} + E_{chemical} + ... = \text{constant}\)\) Line 583
33 Display \(\(E_{mechanical} = KE + PE = \text{constant}\)\) Line 587
34 Display \(\(KE_i + PE_i = KE_f + PE_f\)\) Line 591
35 Display \(\(KE_i + PE_i = KE_f + PE_f + E_{thermal}\)\) Line 614
36 Display \(\(W_{non-conservative} = \Delta KE + \Delta PE\)\) Line 618
37 Display \(\(v = \sqrt{2gh} = \sqrt{2(9.8)(5)} = 9.9 \text{ m/s}\)\) Line 626
38 Display \(\(mgh - 20 = \frac{1}{2}mv^2\)\) Line 630
39 Display \(\((2)(9.8)(5) - 20 = \frac{1}{2}(2)v^2\)\) Line 631
40 Display \(\(v = 8.1 \text{ m/s}\)\) Line 632
41 Inline $- Maximum speed: Occurs where PE is minimum - Range of motion: Between turning points wh... Line 775
42 Display \(\(P = \frac{W}{t} = \frac{\Delta E}{t}\)\) Line 905
43 Inline \(= power (watts, W) -\) Line 909
44 Inline \(= work done (joules, J) -\) Line 910
45 Inline \(= energy transferred (J) -\) Line 911
46 Display \(\(W = Pt\)\) Line 918
47 Display \(\(P = F \cdot v = Fv\cos(\theta)\)\) Line 939
48 Inline \(= force magnitude (N) -\) Line 943
49 Inline \(= velocity magnitude (m/s) -\) Line 944
50 Inline \():\) Line 947
51 Display \(\(P = Fv\)\) Line 949
52 Display \(\(\text{Efficiency} = \frac{E_{output}}{E_{input}} = \frac{P_{output}}{P_{input}}\)\) Line 974
53 Display \(\(\text{Efficiency} = \frac{E_{output}}{E_{input}} \times 100\%\)\) Line 978
54 Display \(\(\text{Efficiency} = \frac{1600}{2000} = 0.80 = 80\%\)\) Line 1002
55 Display \(\(MA = \frac{F_{output}}{F_{input}}\)\) Line 1133
56 Display \(\(W_{input} = W_{output}\)\) Line 1139
57 Display \(\(F_{input} \cdot d_{input} = F_{output} \cdot d_{output}\)\) Line 1141
58 Display \(\(MA = \frac{F_{output}}{F_{input}} = \frac{d_{input}}{d_{output}}\)\) Line 1145
59 Inline $(distances from fulcrum) Pulley System: - Single fixed pulley: MA = 1 (changes direction on... Line 1154
60 Display \(\(\text{Efficiency} = \frac{AMA}{IMA} \times 100\%\)\) Line 1176
61 Inline $| Crowbar, scissors, seesaw, wheelbarrow | Lifting heavy objects, cutting, balancing | | **P... Line 1187
62 Inline $(length ÷ width) | Axe, knife, chisel, doorstop | Splitting, cutting, holding objects in place... Line 1190
63 Inline $(circumference ÷ pitch) | Bolts, jar lids, vise, cork screw | Fastening, lifting, pressing | ... Line 1191
64 Inline \(- Variable force:\) Line 1369
65 Inline \(**Energy:** - Kinetic:\) Line 1370
66 Inline \(- Elastic potential:\) Line 1374
67 Inline \(**Conservation:** - Mechanical energy (conservative forces only):\) Line 1375
68 Inline \(- Work-energy theorem:\) Line 1379
69 Inline \(**Power:** - Average power:\) Line 1380
70 Inline \(**Efficiency:** -\) Line 1384
71 Inline \(**Mechanical Advantage:** -\) Line 1387

Chapter 7: Momentum and Collisions

29 equations (20 display, 9 inline)

# Type Equation Source
1 Display \(\(\vec{p} = m\vec{v}\)\) Line 45
2 Inline \(is momentum (measured in kg·m/s) -\) Line 49
3 Inline \(is mass (measured in kg) -\) Line 50
4 Inline $is velocity (measured in m/s) Notice that momentum is a vector quantity—it has both magnitu... Line 51
5 Display \(\(\vec{J} = \vec{F}\Delta t\)\) Line 136
6 Inline \(is impulse (measured in N·s or kg·m/s) -\) Line 140
7 Display \(\(\vec{J} = \Delta\vec{p} = \vec{p}_f - \vec{p}_i\)\) Line 161
8 Display \(\(\vec{F}\Delta t = m\vec{v}_f - m\vec{v}_i\)\) Line 165
9 Display \(\(\vec{p}_{total,i} = \vec{p}_{total,f}\)\) Line 244
10 Display \(\(m_1\vec{v}_{1i} + m_2\vec{v}_{2i} = m_1\vec{v}_{1f} + m_2\vec{v}_{2f}\)\) Line 248
11 Display \(\(m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}\)\) Line 352
12 Display $$\frac{1}{2}m_1v_{1i}^2 + \frac{1}{2}m_2v_{2i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}... Line 355
13 Display \(\(v_{1f} = \frac{m_1 - m_2}{m_1 + m_2}v_{1i} + \frac{2m_2}{m_1 + m_2}v_{2i}\)\) Line 359
14 Display \(\(v_{2f} = \frac{2m_1}{m_1 + m_2}v_{1i} + \frac{m_2 - m_1}{m_1 + m_2}v_{2i}\)\) Line 361
15 Inline $)**: The objects exchange velocities. If object 2 is initially at rest, object 1 stops and objec... Line 367
16 Display \(\(m_1v_{1i} + m_2v_{2i} = (m_1 + m_2)v_f\)\) Line 398
17 Display \(\(\Delta KE = KE_i - KE_f\)\) Line 415
18 Display \(\(m_1v_{1ix} + m_2v_{2ix} = m_1v_{1fx} + m_2v_{2fx}\)\) Line 505
19 Display \(\(m_1v_{1iy} + m_2v_{2iy} = m_1v_{1fy} + m_2v_{2fy}\)\) Line 508
20 Inline \(- Direction:\) Line 519
21 Inline $### Glancing Collisions When objects don't collide head-on, they undergo *glancing collisions... Line 520
22 Display $$x_{cm} = \frac{m_1x_1 + m_2x_2 + ... + m_nx_n}{m_1 + m_2 + ... + m_n} = \frac{\sum m_ix_i}{\sum... Line 608
23 Display \(\(x_{cm} = \frac{\sum m_ix_i}{M_{total}}, \quad y_{cm} = \frac{\sum m_iy_i}{M_{total}}\)\) Line 611
24 Display \(\(\vec{v}_{cm} = \frac{\sum m_i\vec{v}_i}{M_{total}}\)\) Line 620
25 Display \(\(\vec{p}_{total} = M_{total}\vec{v}_{cm}\)\) Line 624
26 Display \(\(0 = (M - \Delta m)v - \Delta m \cdot v_e\)\) Line 658
27 Display \(\(\Delta v = v_e \ln\left(\frac{M_i}{M_f}\right)\)\) Line 666
28 Inline $must be large, meaning most of the rocket is fuel - Achieving high speeds requires multistage ro... Line 679
29 Inline $). This vector quantity plays a central role in analyzing collisions and interactions. **Key Co... Line 882

Chapter 8: Rotational Motion and Angular Momentum

29 equations (29 display, 0 inline)

# Type Equation Source
1 Display \(\(s = r\theta\)\) Line 50
2 Display \(\(\omega = \frac{\Delta\theta}{\Delta t}\)\) Line 127
3 Display \(\(v = r\omega\)\) Line 133
4 Display \(\(\alpha = \frac{\Delta\omega}{\Delta t}\)\) Line 195
5 Display \(\(a_t = r\alpha\)\) Line 201
6 Display \(\(\omega = \omega_0 + \alpha t\)\) Line 228
7 Display \(\(\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2\)\) Line 230
8 Display \(\(\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)\)\) Line 232
9 Display \(\(\theta = \theta_0 + \frac{1}{2}(\omega_0 + \omega)t\)\) Line 234
10 Display \(\(\tau = rF\sin\theta\)\) Line 327
11 Display \(\(\tau = rF_\perp\)\) Line 337
12 Display \(\(\sum \tau = \tau_1 + \tau_2 + \tau_3 + ...\)\) Line 401
13 Display \(\(\sum \tau = 0\)\) Line 405
14 Display \(\(I = mr^2\)\) Line 428
15 Display \(\(I = \sum m_i r_i^2\)\) Line 432
16 Display \(\(\sum \tau = I\alpha\)\) Line 523
17 Display \(\(KE_{rot} = \frac{1}{2}I\omega^2\)\) Line 558
18 Display \(\(KE_{total} = KE_{trans} + KE_{rot} = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2\)\) Line 564
19 Display \(\(E_{initial} = E_{final}\)\) Line 630
20 Display \(\(PE_i + KE_{trans,i} + KE_{rot,i} = PE_f + KE_{trans,f} + KE_{rot,f}\)\) Line 631
21 Display \(\(L = I\omega\)\) Line 639
22 Display \(\(\sum \tau = \frac{\Delta L}{\Delta t}\)\) Line 645
23 Display \(\(L = mvr\)\) Line 651
24 Display \(\(L_{initial} = L_{final}\)\) Line 714
25 Display \(\(I_i\omega_i = I_f\omega_f\)\) Line 715
26 Display \(\(v_{cm} = r\omega\)\) Line 814
27 Display \(\(mgh = \frac{1}{2}mv_{cm}^2 + \frac{1}{2}I\omega^2\)\) Line 904
28 Display \(\(v_{cm} = \sqrt{\frac{2gh}{1 + I/mr^2}}\)\) Line 908
29 Display \(\(a_{cm} = \frac{g\sin\theta}{1 + I/mr^2}\)\) Line 914

Chapter 10: Waves and Sound

20 equations (12 display, 8 inline)

# Type Equation Source
1 Display \(\(T = \frac{1}{f}\)\) Line 243
2 Display \(\(v = f\lambda\)\) Line 253
3 Display \(\(y_{total} = y_1 + y_2\)\) Line 339
4 Display \(\(f' = f \left(\frac{v}{v \pm v_s}\right)\)\) Line 640
5 Display \(\(f' = f \left(\frac{v \pm v_o}{v}\right)\)\) Line 650
6 Display \(\(v = 331 + 0.6T\)\) Line 777
7 Display \(\(I = \frac{P}{4\pi r^2}\)\) Line 796
8 Display \(\(\beta = 10 \log_{10}\left(\frac{I}{I_0}\right)\)\) Line 804
9 Display \(\(f_{beat} = \|f_1 - f_2\|\)\) Line 1023
10 Display \(\(f_n = \frac{n}{2L}\sqrt{\frac{T}{\mu}}\)\) Line 1061
11 Display \(\(f_n = \frac{nv}{2L}\)\) Line 1066
12 Display \(\(f_n = \frac{nv}{4L}\)\) Line 1069
13 Inline \(\| v = wave speed, f = frequency, λ = wavelength \| \| Period-frequency \|\) Line 1228
14 Inline \(\| T = period, f = frequency \| \| Doppler (moving source) \|\) Line 1229
15 Inline \(\| f' = observed frequency, v = wave speed, v_s = source speed \| \| Doppler (moving observer) \|\) Line 1230
16 Inline \(\| v_o = observer speed \| \| Sound level \|\) Line 1231
17 Inline \(\| β = decibels, I = intensity, I₀ = 10⁻¹² W/m² \| \| Beat frequency \|\) Line 1232
18 Inline \(\| f₁, f₂ = frequencies of interfering waves \| \| String harmonics \|\) Line 1233
19 Inline \(\| n = harmonic number, L = length, T = tension, μ = mass/length \| \| Open pipe harmonics \|\) Line 1234
20 Inline \(\| n = 1, 2, 3... (all harmonics) \| \| Closed pipe harmonics \|\) Line 1235

Chapter 12: Electric Charge and Electric Fields

18 equations (18 display, 0 inline)

# Type Equation Source
1 Display \(\(F = k \frac{\|q_1 q_2\|}{r^2}\)\) Line 338
2 Display \(\(F_g = G \frac{m_1 m_2}{r^2}\)\) Line 349
3 Display \(\(\vec{F}_{total} = \vec{F}_{12} + \vec{F}_{13}\)\) Line 426
4 Display \(\(\vec{E} = \frac{\vec{F}}{q_0}\)\) Line 442
5 Display \(\(E = k \frac{\|Q\|}{r^2}\)\) Line 448
6 Display \(\(F = qE\)\) Line 545
7 Display \(\(U = k \frac{q_1 q_2}{r}\)\) Line 580
8 Display \(\(W = -\Delta U = -(U_f - U_i)\)\) Line 593
9 Display \(\(\Delta KE = W = -\Delta U\)\) Line 599
10 Display \(\(V = \frac{U}{q}\)\) Line 661
11 Display \(\(V = k \frac{Q}{r}\)\) Line 667
12 Display \(\(\Delta V = V_B - V_A\)\) Line 682
13 Display \(\(W = q \Delta V\)\) Line 686
14 Display \(\(E = -\frac{\Delta V}{\Delta d}\)\) Line 746
15 Display \(\(E = \frac{V}{d}\)\) Line 750
16 Display \(\(E = \frac{100 \text{ V}}{0.1 \text{ m}} = 1000 \text{ V/m} = 1000 \text{ N/C}\)\) Line 762
17 Display \(\(W_{net} = \Delta KE\)\) Line 793
18 Display \(\(\Delta KE + \Delta PE = 0\)\) Line 797

Chapter 13: Electric Circuits

17 equations (16 display, 1 inline)

# Type Equation Source
1 Display \(\(I = \frac{\Delta Q}{\Delta t}\)\) Line 56
2 Display \(\(R = \rho \frac{L}{A}\)\) Line 148
3 Display \(\(V = IR\)\) Line 156
4 Display \(\(C = \frac{Q}{V}\)\) Line 265
5 Display \(\(C = \epsilon_0 \epsilon_r \frac{A}{d}\)\) Line 281
6 Display \(\(U = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{Q^2}{2C}\)\) Line 362
7 Display \(\(V = L\frac{dI}{dt}\)\) Line 382
8 Display \(\(L = \mu_0 \mu_r \frac{N^2 A}{l}\)\) Line 397
9 Display \(\(V(t) = V_0 \sin(2\pi ft)\)\) Line 485
10 Display \(\(\text{Capacity (Ah)} = \text{Current (A)} \times \text{Time (h)}\)\) Line 588
11 Display \(\(E = \text{Capacity} \times \text{Voltage}\)\) Line 594
12 Display \(\(P = IV\)\) Line 669
13 Display \(\(P = I^2R = \frac{V^2}{R}\)\) Line 673
14 Display \(\(\text{Energy (kWh)} = \text{Power (kW)} \times \text{Time (h)}\)\) Line 691
15 Display $$## Series and Parallel Circuits ### Series Circuits In a series circuit, components are c... Line 695
16 Inline $\text{Cost} = 1.5 \text{ kW} \times 0.25 \text{ h} \times $ Line 695
17 Display \(\(**Power**: Mechanical power output:\)\) Line 1082

Usage Notes

  • Display equations ($$...$$) are rendered on their own line, centered
  • Inline equations ($...$) are rendered within text
  • Click the source link to navigate to the equation in context
  • If an equation doesn't render correctly, check for:
  • Missing or mismatched delimiters
  • Invalid LaTeX syntax
  • Special characters that need escaping