1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298 | # Sound Spectrum Analyzer with FFT - Optimized for MicroPython
# Combines INMP441 I2S microphone with SSD1306 OLED display and performs FFT
from machine import I2S, Pin, SPI
import ssd1306
import math
import struct
import time
import array
# OLED Display configuration
SCL = Pin(2) # SPI Clock
SDA = Pin(3) # SPI Data
RES = Pin(4) # Reset
DC = Pin(5) # Data/Command
CS = Pin(6) # Chip Select
# Initialize SPI and OLED
spi = SPI(0, sck=SCL, mosi=SDA)
oled = ssd1306.SSD1306_SPI(128, 64, spi, DC, RES, CS)
# I2S Microphone configuration
SCK_PIN = 10 # Serial Clock
WS_PIN = 11 # Word Select
SD_PIN = 12 # Serial Data
# I2S configuration parameters
I2S_ID = 0
SAMPLE_SIZE_IN_BITS = 32
FORMAT = I2S.MONO
SAMPLE_RATE = 16000
BUFFER_LENGTH_IN_BYTES = 40000
# Initialize I2S for microphone
audio_in = I2S(
I2S_ID,
sck=Pin(SCK_PIN),
ws=Pin(WS_PIN),
sd=Pin(SD_PIN),
mode=I2S.RX,
bits=SAMPLE_SIZE_IN_BITS,
format=FORMAT,
rate=SAMPLE_RATE,
ibuf=BUFFER_LENGTH_IN_BYTES,
)
# FFT size (must be a power of 2)
FFT_SIZE = 512
# Precompute the Hanning window coefficients
hanning_window = array.array('f', [0] * FFT_SIZE)
for i in range(FFT_SIZE):
hanning_window[i] = 0.5 * (1 - math.cos(2 * math.pi * i / (FFT_SIZE - 1)))
# Precompute bit-reversal table - MicroPython compatible version
def bit_reverse(n, bits):
result = 0
for i in range(bits):
result = (result << 1) | (n & 1)
n >>= 1
return result
bit_reverse_table = array.array('H', [0] * FFT_SIZE)
bits = int(math.log2(FFT_SIZE))
for i in range(FFT_SIZE):
bit_reverse_table[i] = bit_reverse(i, bits)
# Precompute twiddle factors (complex exponentials)
twiddle_factors_real = array.array('f', [0] * (FFT_SIZE // 2))
twiddle_factors_imag = array.array('f', [0] * (FFT_SIZE // 2))
for i in range(FFT_SIZE // 2):
angle = -2 * math.pi * i / FFT_SIZE
twiddle_factors_real[i] = math.cos(angle)
twiddle_factors_imag[i] = math.sin(angle)
def capture_audio_samples():
"""Capture audio samples for FFT processing"""
# For 32-bit samples, we need 4 bytes per sample
NUM_SAMPLE_BYTES = FFT_SIZE * 4
# Raw samples will be stored in this buffer (signed 32-bit integers)
samples_raw = bytearray(NUM_SAMPLE_BYTES)
# Read samples from I2S microphone
num_bytes_read = audio_in.readinto(samples_raw)
if num_bytes_read == 0:
return None
# Process raw samples
format_str = "<{}i".format(num_bytes_read // 4)
samples = struct.unpack(format_str, samples_raw[:num_bytes_read])
# Convert to float array and apply windowing function
# Reuse the same arrays to avoid memory allocation
real = array.array('f', [0] * len(samples))
imag = array.array('f', [0] * len(samples))
for i in range(len(samples)):
# Shift right by 8 bits for INMP441 and apply window
real[i] = (samples[i] >> 8) * hanning_window[i]
imag[i] = 0 # Imaginary part is zero for real input
return (real, imag)
def iterative_fft(real, imag):
"""Compute FFT in-place using an iterative algorithm"""
n = len(real)
assert n == len(imag)
assert n == FFT_SIZE, "FFT size must match precomputed tables"
# Bit-reverse reordering
for i in range(n):
j = bit_reverse_table[i]
if i < j:
real[i], real[j] = real[j], real[i]
imag[i], imag[j] = imag[j], imag[i]
# Cooley-Tukey iterative FFT
for stage in range(1, int(math.log2(n)) + 1):
m = 2 ** stage # Distance between butterflies
m2 = m // 2 # Distance between butterfly pairs
# Process each group of butterflies
for k in range(0, n, m):
# Process each butterfly pair
for j in range(m2):
# Get twiddle factor
twiddle_idx = j * (n // m)
wr = twiddle_factors_real[twiddle_idx]
wi = twiddle_factors_imag[twiddle_idx]
# Get indices for butterfly operation
idx1 = k + j
idx2 = idx1 + m2
# Calculate butterfly
tr = real[idx2] * wr - imag[idx2] * wi
ti = real[idx2] * wi + imag[idx2] * wr
# Store results
real[idx2] = real[idx1] - tr
imag[idx2] = imag[idx1] - ti
real[idx1] = real[idx1] + tr
imag[idx1] = imag[idx1] + ti
return (real, imag)
def calculate_magnitudes(real, imag):
"""Calculate magnitude spectrum from complex FFT result"""
# Only need the first half due to symmetry for real input
mags = array.array('f', [0] * (FFT_SIZE // 2))
# Use a fast approximation for magnitude calculation
# |z| ≈ max(|Re(z)|, |Im(z)|) + 0.4 * min(|Re(z)|, |Im(z)|)
for i in range(FFT_SIZE // 2):
re_abs = abs(real[i])
im_abs = abs(imag[i])
if re_abs > im_abs:
mags[i] = re_abs + 0.4 * im_abs
else:
mags[i] = im_abs + 0.4 * re_abs
return mags
def draw_spectrum(magnitudes):
"""Draw the frequency spectrum on the OLED display with focus on lower frequencies"""
# Clear the display
oled.fill(0)
# Number of frequency bins to display
num_bins = 64
# Focus on lower frequencies by only taking the first third of the spectrum
# This will make whistling frequencies more visible across the display
lower_freq_focus = len(magnitudes) // 3
# Calculate the frequency range being displayed
# Nyquist frequency is half the sample rate
nyquist_freq = SAMPLE_RATE / 2
# Each bin represents nyquist_freq/FFT_SIZE Hz
bin_freq_width = nyquist_freq / (FFT_SIZE // 2)
# Calculate frequency range start and end
freq_start = 0 # Hz
freq_end = int(bin_freq_width * lower_freq_focus) # Hz
# Combine frequency bins to fit display (use precomputed indexes)
display_bins = array.array('f', [0] * num_bins)
bin_width = lower_freq_focus // num_bins
# Simple averaging of bins, focusing on lower frequencies
for i in range(num_bins):
start_idx = i * bin_width
end_idx = min((i + 1) * bin_width, lower_freq_focus)
if start_idx >= lower_freq_focus:
break
# Fast averaging
bin_sum = 0
for j in range(start_idx, end_idx):
bin_sum += magnitudes[j]
display_bins[i] = bin_sum / (end_idx - start_idx) if end_idx > start_idx else 0
# Find maximum value for scaling (avoid division by zero)
max_magnitude = 1
for mag in display_bins:
if mag > max_magnitude:
max_magnitude = mag
# Reserve top row for frequency labels
top_margin = 8
# Use display height minus top margin
display_height = 54 # 64 - top margin - 2
baseline = 63 # Start from the bottom of the screen
scaling_factor = 0.5 # Adjust scaling to distribute bars
# Find the frequency bin with the highest magnitude
max_idx = 0
max_val = 0
for i in range(lower_freq_focus):
if i < len(magnitudes) and magnitudes[i] > max_val:
max_val = magnitudes[i]
max_idx = i
# Calculate the peak frequency in Hz
peak_freq = int(max_idx * bin_freq_width)
# Display peak frequency on the left and max range on the right
oled.text("{}".format(peak_freq), 0, 0, 1)
end_text = "{}".format(freq_end)
# Position end frequency text right-aligned
end_x = 128 - (len(end_text) * 8) # Each character is ~8 pixels wide
oled.text(end_text, end_x, 0, 1)
# Draw the spectrum - each bin takes 2 pixels width
for i in range(len(display_bins)):
# Apply sqrt scaling for more balanced distribution
normalized = display_bins[i] / max_magnitude
# Use math.sqrt since we can't avoid it in MicroPython
height = int(math.sqrt(normalized) * display_height * scaling_factor)
# Draw vertical bar
x = i * 2 # Each bar is 2 pixels wide
for y in range(baseline, baseline - height, -1):
if y >= top_margin: # Ensure we don't write over the frequency text
oled.pixel(x, y, 1)
oled.pixel(x + 1, y, 1) # Make bars 2 pixels wide
# Draw baseline
oled.hline(0, baseline, 128, 1)
# Update the display
oled.show()
try:
print("Optimized Sound Spectrum Analyzer")
print("Press Ctrl+C to stop")
# Calculate and print frequency range information
nyquist_freq = SAMPLE_RATE / 2
bin_freq_width = nyquist_freq / (FFT_SIZE // 2)
lower_freq_focus = (FFT_SIZE // 2) // 3
max_freq = int(bin_freq_width * lower_freq_focus)
print("Frequency resolution: {:.2f} Hz per bin".format(bin_freq_width))
print("Display frequency range: 0 Hz to {} Hz".format(max_freq))
print("FFT size: {}".format(FFT_SIZE))
print("Sample rate: {} Hz".format(SAMPLE_RATE))
# Allocate arrays once for reuse
real_buffer = array.array('f', [0] * FFT_SIZE)
imag_buffer = array.array('f', [0] * FFT_SIZE)
# Main processing loop
while True:
# Capture audio samples
samples = capture_audio_samples()
if samples:
# Get real and imaginary arrays
fft_real, fft_imag = samples
# Compute FFT in-place
iterative_fft(fft_real, fft_imag)
# Calculate magnitude spectrum
magnitudes = calculate_magnitudes(fft_real, fft_imag)
# Draw the spectrum
draw_spectrum(magnitudes)
except KeyboardInterrupt:
print("Monitoring stopped")
finally:
# Clean up
audio_in.deinit()
print("Program terminated")
|