1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386 | # Sound Spectrum Analyzer with direct use of assembler FFT
# Combines INMP441 I2S microphone with SSD1306 OLED display
from machine import I2S, Pin, SPI
import ssd1306
import math
import struct
import time
import array
print("Importing FFT modules...")
try:
# Try to import the direct assembler FFT function
import dft
print("FFT module imported successfully")
except ImportError as e:
print(f"Could not import FFT module: {e}")
# OLED Display configuration
SCL = Pin(2) # SPI Clock
SDA = Pin(3) # SPI Data
RES = Pin(4) # Reset
DC = Pin(5) # Data/Command
CS = Pin(6) # Chip Select
# Initialize SPI and OLED
print("Initializing OLED display...")
spi = SPI(0, sck=SCL, mosi=SDA)
oled = ssd1306.SSD1306_SPI(128, 64, spi, DC, RES, CS)
# I2S Microphone configuration
SCK_PIN = 10 # Serial Clock
WS_PIN = 11 # Word Select
SD_PIN = 12 # Serial Data
# I2S configuration parameters
I2S_ID = 0
SAMPLE_SIZE_IN_BITS = 32
FORMAT = I2S.MONO
SAMPLE_RATE = 8000
BUFFER_LENGTH_IN_BYTES = 40000
# Initialize I2S for microphone
print("Initializing I2S microphone...")
audio_in = I2S(
I2S_ID,
sck=Pin(SCK_PIN),
ws=Pin(WS_PIN),
sd=Pin(SD_PIN),
mode=I2S.RX,
bits=SAMPLE_SIZE_IN_BITS,
format=FORMAT,
rate=SAMPLE_RATE,
ibuf=BUFFER_LENGTH_IN_BYTES,
)
# FFT size (must be a power of 2)
FFT_SIZE = 256
# Create a Hanning window function
def hanning(x, length):
return 0.5 - 0.5 * math.cos(2 * math.pi * x / (length - 1))
# Check if we have the direct FFT assembler function
have_asm_fft = hasattr(dft, 'fft')
# Create the control structure for the FFT assembler function
if have_asm_fft:
print("Setting up direct assembler FFT...")
try:
# Create arrays for real and imaginary data
fft_re = array.array('f', [0] * FFT_SIZE)
fft_im = array.array('f', [0] * FFT_SIZE)
# Calculate bits for FFT size
bits = int(math.log2(FFT_SIZE))
# Create control array
# ctrl[0] = length of data array
# ctrl[1] = no. of bits to represent the length
# ctrl[2] = Address of real data array
# ctrl[3] = Address of imaginary data array
# ctrl[4] = Byte Offset into entry 0 of complex roots of unity
# ctrl[5] = Address of scratchpad for use by fft code
from uctypes import addressof
ctrl = array.array('i', [0] * 6)
ctrl[0] = FFT_SIZE
ctrl[1] = bits
ctrl[2] = addressof(fft_re)
ctrl[3] = addressof(fft_im)
# Create complex scratchpad and roots of unity
COMPLEX_NOS = 7
ROOTSOFFSET = COMPLEX_NOS * 2
cmplx = array.array('f', [0.0] * ((bits + 1 + COMPLEX_NOS) * 2))
ctrl[4] = COMPLEX_NOS * 8 # Byte offset
ctrl[5] = addressof(cmplx)
# Initialize u value
cmplx[0] = 1.0
cmplx[1] = 0.0
# Add scaling factor
cmplx[12] = 1.0 / FFT_SIZE
cmplx[13] = 0.0
# Calculate roots of unity
i = ROOTSOFFSET
creal = -1
cimag = 0
cmplx[i] = creal
cmplx[i + 1] = cimag
i += 2
for x in range(bits):
cimag = math.sqrt((1.0 - creal) / 2.0)
creal = math.sqrt((1.0 + creal) / 2.0)
cmplx[i] = creal
cmplx[i + 1] = cimag
i += 2
print("Direct assembler FFT setup successful")
using_asm_fft = True
except Exception as e:
print(f"Error setting up direct assembler FFT: {e}")
have_asm_fft = False
using_asm_fft = False
# Define FFT constants
FORWARD = 1 # Forward transform
REVERSE = 0 # Inverse transform
# Convert to polar coordinates
def to_polar(real, imag):
"""Convert complex values to polar (magnitude, phase)"""
n = len(real)
for i in range(n):
magnitude = math.sqrt(real[i]*real[i] + imag[i]*imag[i])
phase = math.atan2(imag[i], real[i])
real[i] = magnitude
imag[i] = phase
# Raw audio buffer for incoming samples
raw_samples = bytearray(FFT_SIZE * 4) # 32-bit samples = 4 bytes each
# Performance monitoring variables
total_capture_time = 0
total_fft_time = 0
total_display_time = 0
cycle_count = 0
def capture_audio_samples():
"""Capture audio samples and populate the FFT input arrays"""
global total_capture_time
try:
start_time = time.ticks_us()
# Read samples from I2S microphone
num_bytes_read = audio_in.readinto(raw_samples)
if num_bytes_read == 0:
return False
# Process raw samples
samples_count = num_bytes_read // 4
format_str = "<{}i".format(samples_count)
samples = struct.unpack(format_str, raw_samples[:num_bytes_read])
# Clear arrays
for i in range(FFT_SIZE):
fft_im[i] = 0.0
# Populate the real array, apply windowing
sample_count = min(len(samples), FFT_SIZE)
for i in range(sample_count):
# Need to shift right by 8 bits for INMP441 (24-bit samples in 32-bit words)
# Apply Hanning window
fft_re[i] = (samples[i] >> 8) * hanning(i, FFT_SIZE)
# Zero-pad if we didn't fill the array
for i in range(sample_count, FFT_SIZE):
fft_re[i] = 0.0
# Update timing statistics
elapsed = time.ticks_diff(time.ticks_us(), start_time)
total_capture_time += elapsed
return True
except Exception as e:
print(f"Error in capture_audio_samples: {e}")
return False
def process_fft():
"""Process the FFT with appropriate implementation"""
global total_fft_time
try:
start_time = time.ticks_us()
# Run the FFT with the assembler function
dft.fft(ctrl, FORWARD)
# Convert to polar manually
to_polar(fft_re, fft_im)
# Update timing statistics
elapsed = time.ticks_diff(time.ticks_us(), start_time)
total_fft_time += elapsed
return True
except Exception as e:
print(f"Error in process_fft: {e}")
return False
def draw_spectrum():
"""Draw the frequency spectrum on the OLED display"""
global total_display_time
try:
start_time = time.ticks_us()
# Clear the display
oled.fill(0)
# Number of frequency bins to display
num_bins = 64
# Calculate the frequency range being displayed
nyquist_freq = SAMPLE_RATE / 2
bin_freq_width = nyquist_freq / (FFT_SIZE // 2)
freq_end = int(bin_freq_width * (FFT_SIZE // 2))
# Combine frequency bins to fit display
display_bins = array.array('f', [0] * num_bins)
bin_width = (FFT_SIZE // 2) // num_bins
# Simple averaging of bins, focusing on lower frequencies
for i in range(num_bins):
start_idx = i * bin_width
end_idx = min((i + 1) * bin_width, FFT_SIZE // 2)
# Fast averaging
bin_sum = 0
for j in range(start_idx, end_idx):
bin_sum += fft_re[j] # Magnitudes are in the real array after polar conversion
display_bins[i] = bin_sum / (end_idx - start_idx) if end_idx > start_idx else 0
# Find maximum value for scaling (avoid division by zero)
max_magnitude = 1.0
for mag in display_bins:
if mag > max_magnitude:
max_magnitude = mag
# Reserve top row for frequency labels
top_margin = 8
# Use display height minus top margin
display_height = 54 # 64 - top margin - 2
baseline = 63 # Start from the bottom of the screen
scaling_factor = 1.0 # Adjust scaling to distribute bars
# Find the frequency bin with the highest magnitude
max_idx = 0
max_val = 0
for i in range(FFT_SIZE // 2):
if fft_re[i] > max_val:
max_val = fft_re[i]
max_idx = i
# Calculate the peak frequency in Hz
peak_freq = int(max_idx * bin_freq_width)
# Display peak frequency on the left and max range on the right
oled.text(f"{peak_freq}", 0, 0, 1)
end_text = f"{freq_end}"
# Position end frequency text right-aligned
end_x = 128 - (len(end_text) * 8) # Each character is ~8 pixels wide
oled.text(end_text, end_x, 0, 1)
# Draw the spectrum - each bin takes 2 pixels width
for i in range(len(display_bins)):
# Apply sqrt scaling for more balanced distribution
normalized = display_bins[i] / max_magnitude
# Use sqrt scaling for better visual distribution
height = int(math.sqrt(normalized) * display_height * scaling_factor)
# Draw vertical bar
x = i * 2 # Each bar is 2 pixels wide
for y in range(baseline, baseline - height, -1):
if y >= top_margin: # Ensure we don't write over the frequency text
oled.pixel(x, y, 1)
oled.pixel(x + 1, y, 1) # Make bars 2 pixels wide
# Draw baseline
oled.hline(0, baseline, 128, 1)
# Update the display
oled.show()
# Update timing statistics
elapsed = time.ticks_diff(time.ticks_us(), start_time)
total_display_time += elapsed
return True
except Exception as e:
print(f"Error in draw_spectrum: {e}")
# Try to show error on display
try:
oled.fill(0)
oled.text("FFT Error", 0, 0, 1)
oled.text(str(e)[:16], 0, 10, 1)
oled.show()
except:
pass
return False
try:
print("\n" + "="*40)
print("Sound Spectrum Analyzer")
print("="*40)
# Welcome message on OLED
oled.fill(0)
oled.text("FFT Analyzer", 0, 0, 1)
oled.text("Using ASM FFT", 0, 10, 1)
oled.text("Starting...", 0, 20, 1)
oled.show()
time.sleep(1)
# Calculate and print frequency range information
nyquist_freq = SAMPLE_RATE / 2
bin_freq_width = nyquist_freq / (FFT_SIZE // 2)
max_freq = int(bin_freq_width * (FFT_SIZE // 2))
print("\nAnalyzer configuration:")
print(f"- Using assembler FFT: {using_asm_fft}")
print(f"- Frequency resolution: {bin_freq_width:.2f} Hz per bin")
print(f"- Display frequency range: 0 Hz to {max_freq} Hz")
print(f"- FFT size: {FFT_SIZE}")
print(f"- Sample rate: {SAMPLE_RATE} Hz")
print("\nStarting main loop...")
print("Performance statistics will be displayed every 100 cycles")
# Main processing loop
while True:
# Capture audio samples
if capture_audio_samples():
# Process FFT
if process_fft():
# Draw the spectrum
draw_spectrum()
# Performance monitoring
cycle_count += 1
if cycle_count >= 100:
# Calculate average times
avg_capture = total_capture_time / cycle_count / 1000 # Convert to ms
avg_fft = total_fft_time / cycle_count / 1000 # Convert to ms
avg_display = total_display_time / cycle_count / 1000 # Convert to ms
total_time = avg_capture + avg_fft + avg_display
# Print performance statistics
print("\nPerformance Statistics (average over 100 cycles):")
print(f"- Audio capture time: {avg_capture:.2f} ms ({(avg_capture/total_time*100):.1f}%)")
print(f"- FFT processing time: {avg_fft:.2f} ms ({(avg_fft/total_time*100):.1f}%)")
print(f"- Display update time: {avg_display:.2f} ms ({(avg_display/total_time*100):.1f}%)")
print(f"- Total cycle time: {total_time:.2f} ms")
print(f"- Theoretical max FPS: {1000/total_time:.1f}")
# Reset counters
total_capture_time = 0
total_fft_time = 0
total_display_time = 0
cycle_count = 0
except KeyboardInterrupt:
print("Monitoring stopped by user")
except Exception as e:
print(f"Fatal error: {e}")
finally:
# Clean up
try:
audio_in.deinit()
except:
pass
print("Program terminated")
|