Concept List
This document contains 300 concepts for the Applied Linear Algebra for AI and Machine Learning course.
Part 1: Foundations of Linear Algebra
Chapter 1: Vectors and Vector Spaces
- Scalar
- Vector
- Vector Notation
- 2D Vector
- 3D Vector
- N-Dimensional Vector
- Vector Addition
- Scalar Multiplication
- Vector Subtraction
- Dot Product
- Cross Product
- Vector Magnitude
- Unit Vector
- Vector Normalization
- Euclidean Distance
- L1 Norm
- L2 Norm
- L-Infinity Norm
- Linear Combination
- Span
- Linear Independence
- Linear Dependence
- Basis Vector
- Standard Basis
- Coordinate System
- Vector Space
- Dimension of Space
Chapter 2: Matrices and Matrix Operations
- Matrix
- Matrix Notation
- Matrix Dimensions
- Row Vector
- Column Vector
- Matrix Entry
- Matrix Addition
- Matrix Scalar Multiply
- Matrix-Vector Product
- Matrix Multiplication
- Matrix Transpose
- Symmetric Matrix
- Identity Matrix
- Diagonal Matrix
- Triangular Matrix
- Upper Triangular
- Lower Triangular
- Orthogonal Matrix
- Matrix Inverse
- Invertible Matrix
- Sparse Matrix
- Dense Matrix
- Block Matrix
Chapter 3: Systems of Linear Equations
- Linear Equation
- System of Equations
- Matrix Equation Form
- Augmented Matrix
- Gaussian Elimination
- Row Operations
- Row Swap
- Row Scaling
- Row Addition
- Row Echelon Form
- Reduced Row Echelon Form
- Pivot Position
- Pivot Column
- Free Variable
- Basic Variable
- Solution Set
- Unique Solution
- Infinite Solutions
- No Solution
- Homogeneous System
- Trivial Solution
- Numerical Stability
- Back Substitution
Chapter 4: Linear Transformations
- Function
- Linear Transformation
- Transformation Matrix
- Domain
- Codomain
- Image
- Rotation Matrix
- 2D Rotation
- 3D Rotation
- Scaling Matrix
- Uniform Scaling
- Non-Uniform Scaling
- Shear Matrix
- Reflection Matrix
- Projection
- Orthogonal Projection
- Composition of Transforms
- Kernel
- Null Space
- Range
- Column Space
- Rank
- Nullity
- Rank-Nullity Theorem
- Invertible Transform
- Change of Basis
- Basis Transition Matrix
Part 2: Advanced Matrix Theory
Chapter 5: Determinants and Matrix Properties
- Determinant
- 2x2 Determinant
- 3x3 Determinant
- Cofactor Expansion
- Minor
- Cofactor
- Determinant Properties
- Multiplicative Property
- Transpose Determinant
- Singular Matrix
- Volume Scaling Factor
- Signed Area
- Cramers Rule
Chapter 6: Eigenvalues and Eigenvectors
- Eigenvalue
- Eigenvector
- Eigen Equation
- Characteristic Polynomial
- Characteristic Equation
- Eigenspace
- Algebraic Multiplicity
- Geometric Multiplicity
- Diagonalization
- Diagonal Form
- Similar Matrices
- Complex Eigenvalue
- Spectral Theorem
- Symmetric Eigenvalues
- Power Iteration
- Dominant Eigenvalue
- Eigendecomposition
Chapter 7: Matrix Decompositions
- Matrix Factorization
- LU Decomposition
- Partial Pivoting
- QR Decomposition
- Gram-Schmidt QR
- Householder QR
- Cholesky Decomposition
- Positive Definite Matrix
- SVD
- Singular Value
- Left Singular Vector
- Right Singular Vector
- Full SVD
- Compact SVD
- Truncated SVD
- Low-Rank Approximation
- Matrix Rank
- Numerical Rank
- Condition Number
Chapter 8: Vector Spaces and Inner Product Spaces
- Abstract Vector Space
- Subspace
- Vector Space Axioms
- Inner Product
- Inner Product Space
- Norm from Inner Product
- Cauchy-Schwarz Inequality
- Orthogonality
- Orthogonal Vectors
- Orthonormal Set
- Orthonormal Basis
- Gram-Schmidt Process
- Projection onto Subspace
- Least Squares Problem
- Normal Equations
- Row Space
- Left Null Space
- Four Subspaces
- Pseudoinverse
Part 3: Linear Algebra in Machine Learning
Chapter 9: ML Foundations
- Feature Vector
- Feature Matrix
- Data Matrix
- Covariance Matrix
- Correlation Matrix
- Standardization
- PCA
- Principal Component
- Variance Explained
- Scree Plot
- Dimensionality Reduction
- Linear Regression
- Design Matrix
- Ridge Regression
- Lasso Regression
- Regularization
- Gradient Vector
- Gradient Descent
- Batch Gradient Descent
- Learning Rate
Chapter 10: Neural Networks and Deep Learning
- Perceptron
- Neuron Model
- Activation Function
- ReLU
- Sigmoid
- Tanh
- Softmax
- Weight Matrix
- Bias Vector
- Forward Propagation
- Backpropagation
- Chain Rule Matrices
- Loss Function
- Cross-Entropy Loss
- Neural Network Layer
- Hidden Layer
- Deep Network
- Convolutional Layer
- Convolution Kernel
- Stride
- Padding
- Pooling Layer
- Batch Normalization
- Layer Normalization
- Tensor
- Tensor Operations
Chapter 11: Generative AI and Large Language Models
- Embedding
- Embedding Space
- Word Embedding
- Semantic Similarity
- Cosine Similarity
- Attention Mechanism
- Self-Attention
- Cross-Attention
- Query Matrix
- Key Matrix
- Value Matrix
- Attention Score
- Attention Weights
- Multi-Head Attention
- Transformer Architecture
- Position Encoding
- LoRA
- Latent Space
- Interpolation
Chapter 12: Optimization and Learning Algorithms
- Hessian Matrix
- Convexity
- Convex Function
- Newtons Method
- Quasi-Newton Method
- BFGS Algorithm
- SGD
- Mini-Batch SGD
- Momentum
- Adam Optimizer
- RMSprop
- Lagrange Multiplier
- Constrained Optimization
- KKT Conditions
Part 4: Computer Vision and Autonomous Systems
Chapter 13: Image Processing and Computer Vision
- Image Matrix
- Grayscale Image
- RGB Image
- Image Tensor
- Image Convolution
- Image Filter
- Blur Filter
- Sharpen Filter
- Edge Detection
- Sobel Operator
- Fourier Transform
- Frequency Domain
- Image Compression
- Color Space Transform
- Feature Detection
- Homography
Chapter 14: 3D Geometry and Transformations
- 3D Coordinate System
- Euler Angles
- Gimbal Lock
- Quaternion
- Quaternion Rotation
- Homogeneous Coordinates
- Rigid Body Transform
- SE3 Transform
- Camera Matrix
- Intrinsic Parameters
- Extrinsic Parameters
- Projection Matrix
- Perspective Projection
- Stereo Vision
- Triangulation
- Epipolar Geometry
- Point Cloud
Chapter 15: Autonomous Driving and Sensor Fusion
- LIDAR Point Cloud
- Camera Calibration
- Sensor Fusion
- Kalman Filter
- State Vector
- Measurement Vector
- Prediction Step
- Update Step
- Kalman Gain
- Extended Kalman Filter
- State Estimation
- SLAM
- Localization
- Mapping
- Object Detection
- Object Tracking
- Bounding Box
- Path Planning
- Motion Planning
- Trajectory Optimization